On Traveling Fronts of Combustion Equations in Spatially Periodic Media

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yasheng Lyu, Hongjun Guo, Zhi-Cheng Wang
{"title":"On Traveling Fronts of Combustion Equations in Spatially Periodic Media","authors":"Yasheng Lyu, Hongjun Guo, Zhi-Cheng Wang","doi":"10.1007/s10884-024-10388-1","DOIUrl":null,"url":null,"abstract":"<p>This paper is concerned with traveling fronts of spatially periodic reaction–diffusion equations with combustion nonlinearity in <span>\\(\\mathbb {R}^N\\)</span>. It is known that for any given propagation direction <span>\\(e\\in \\mathbb {S}^{N-1}\\)</span>, the equation admits a pulsating front connecting two equilibria 0 and 1. In this paper we firstly give exact asymptotic behaviors of the pulsating front and its derivatives at infinity, and establish uniform decay estimates of the pulsating fronts at infinity on the propagation direction <span>\\(e\\in \\mathbb {S}^{N-1}\\)</span>. Following the uniform estimates, we then show continuous Fréchet differentiability of the pulsating fronts with respect to the propagation direction. Lastly, using the differentiability, we establish the existence, uniqueness and stability of curved fronts with V-shape in <span>\\(\\mathbb {R}^2\\)</span> by constructing suitable super- and subsolutions.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10884-024-10388-1","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is concerned with traveling fronts of spatially periodic reaction–diffusion equations with combustion nonlinearity in \(\mathbb {R}^N\). It is known that for any given propagation direction \(e\in \mathbb {S}^{N-1}\), the equation admits a pulsating front connecting two equilibria 0 and 1. In this paper we firstly give exact asymptotic behaviors of the pulsating front and its derivatives at infinity, and establish uniform decay estimates of the pulsating fronts at infinity on the propagation direction \(e\in \mathbb {S}^{N-1}\). Following the uniform estimates, we then show continuous Fréchet differentiability of the pulsating fronts with respect to the propagation direction. Lastly, using the differentiability, we establish the existence, uniqueness and stability of curved fronts with V-shape in \(\mathbb {R}^2\) by constructing suitable super- and subsolutions.

Abstract Image

论空间周期介质中燃烧方程的移动前沿
本文关注的是\(\mathbb {R}^{N}\)中具有燃烧非线性的空间周期性反应-扩散方程的行进前沿。本文首先给出了脉动前沿及其导数在无穷远处的精确渐近行为,并建立了脉动前沿在无穷远处对传播方向 \(e\in \mathbb {S}^{N-1}\) 的均匀衰减估计。在均匀估计之后,我们证明了脉动前沿关于传播方向的连续弗雷谢特可微分性。最后,利用可微分性,我们通过构造合适的超解和子解,建立了在\(\mathbb {R}^2\) 中具有 V 形的弯曲前沿的存在性、唯一性和稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信