Preparation and characterization of functional metal–organic frameworks-coated extraction bars and their application in the simultaneous determination of pesticides in fetal bovine serum
Dan Zhao, Jianqin Gan, Wei Xiong, Miaoxiu Ge, Hang Su, Xiangyu Wang, Xiangyu Kong, Hongping Zeng, Xiaoming Du, Luhong Wen
{"title":"Preparation and characterization of functional metal–organic frameworks-coated extraction bars and their application in the simultaneous determination of pesticides in fetal bovine serum","authors":"Dan Zhao, Jianqin Gan, Wei Xiong, Miaoxiu Ge, Hang Su, Xiangyu Wang, Xiangyu Kong, Hongping Zeng, Xiaoming Du, Luhong Wen","doi":"10.1016/j.microc.2024.111595","DOIUrl":null,"url":null,"abstract":"Acute pesticide poisoning can cause several symptoms that threaten life safety, and the development of a rapid detection method is conducive to identifying toxicants early. In this work, we proposed a facile post-modification method to fabricate functional metal-organic frameworks (UIO-66-Py) with high specific surface area, stability and target recognition sites. UIO-66-Py-coated extraction bar could be fabricated by using PDMS as a “solid glue” to immobilize UIO-66-Py, where UIO-66-Py interpenetrated into PDMS uniformly to form functional film. The UIO-66-Py-coated extraction bar could work as an efficient solid-phase microextraction device for extraction of toxicants (pesticides) in the fetal bovine serum, which ascribed to great binding energy between UIO-66-Py and pesticides. Moreover, the immobilized membrane fabricated by PDMS would increase penetration of pesticides and diffusion path, thus promoting the retention of pesticides to afford more affinity sites for capturing pesticides. In addition, rotation speed, extraction time, elution solvent, and desorption time were investigated to achieve excellent recovery, and the corresponding optimal conditions were 200 rpm, 10 min, methanol, and 3 min, respectively. Through the established quantitative method, low limit of detections (LODs) of 0.15 − 0.37 ng/mL with relative standard deviations (RSDs) of less than 4.5 %, and linear correlation coefficients (R ) of 0.99 for these pesticides were achieved. The proposed on-site detection method exhibited an excellent performance with great sensitivity, anti-interference, and reusability, which demonstrated that synergistic effect from UIO-66-Py and PDMS facilitated highly sensitive detection and selective extraction. The findings in this work develop efficient detection methods for toxicants in biological sample and provide deep insights to further improve treatment efficiency of pesticide poisoning and afford a great potential in clinical point-of-care testing (POCT).","PeriodicalId":391,"journal":{"name":"Microchemical Journal","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microchemical Journal","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.microc.2024.111595","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Acute pesticide poisoning can cause several symptoms that threaten life safety, and the development of a rapid detection method is conducive to identifying toxicants early. In this work, we proposed a facile post-modification method to fabricate functional metal-organic frameworks (UIO-66-Py) with high specific surface area, stability and target recognition sites. UIO-66-Py-coated extraction bar could be fabricated by using PDMS as a “solid glue” to immobilize UIO-66-Py, where UIO-66-Py interpenetrated into PDMS uniformly to form functional film. The UIO-66-Py-coated extraction bar could work as an efficient solid-phase microextraction device for extraction of toxicants (pesticides) in the fetal bovine serum, which ascribed to great binding energy between UIO-66-Py and pesticides. Moreover, the immobilized membrane fabricated by PDMS would increase penetration of pesticides and diffusion path, thus promoting the retention of pesticides to afford more affinity sites for capturing pesticides. In addition, rotation speed, extraction time, elution solvent, and desorption time were investigated to achieve excellent recovery, and the corresponding optimal conditions were 200 rpm, 10 min, methanol, and 3 min, respectively. Through the established quantitative method, low limit of detections (LODs) of 0.15 − 0.37 ng/mL with relative standard deviations (RSDs) of less than 4.5 %, and linear correlation coefficients (R ) of 0.99 for these pesticides were achieved. The proposed on-site detection method exhibited an excellent performance with great sensitivity, anti-interference, and reusability, which demonstrated that synergistic effect from UIO-66-Py and PDMS facilitated highly sensitive detection and selective extraction. The findings in this work develop efficient detection methods for toxicants in biological sample and provide deep insights to further improve treatment efficiency of pesticide poisoning and afford a great potential in clinical point-of-care testing (POCT).
期刊介绍:
The Microchemical Journal is a peer reviewed journal devoted to all aspects and phases of analytical chemistry and chemical analysis. The Microchemical Journal publishes articles which are at the forefront of modern analytical chemistry and cover innovations in the techniques to the finest possible limits. This includes fundamental aspects, instrumentation, new developments, innovative and novel methods and applications including environmental and clinical field.
Traditional classical analytical methods such as spectrophotometry and titrimetry as well as established instrumentation methods such as flame and graphite furnace atomic absorption spectrometry, gas chromatography, and modified glassy or carbon electrode electrochemical methods will be considered, provided they show significant improvements and novelty compared to the established methods.