Xiaoqing Hu, Tong Zheng, Wenjie Chen, Huilei Duan, Zhongjia Yuan, Jiaqian An, Huihui Zhang, Xuemei Liu
{"title":"Genome-wide identification and expression analysis of the GST gene family of Betula platyphylla","authors":"Xiaoqing Hu, Tong Zheng, Wenjie Chen, Huilei Duan, Zhongjia Yuan, Jiaqian An, Huihui Zhang, Xuemei Liu","doi":"10.1007/s11676-024-01767-x","DOIUrl":null,"url":null,"abstract":"<p>Glutathione-S-transferase (GST, EC2.5.1.18) multifunctional protease is important for detoxification, defense against biotic and abiotic stresses, and secondary metabolic material transport for plant growth and development. In this study, 71 members of the <i>BpGST</i> family were identified from the entire <i>Betula platyphylla</i> Suk. genome. Most of the members encode proteins with amino acid lengths ranging from 101 to 875 and were localized to the cytoplasm by a prediction. <i>BpGSTs</i> can be divided into seven subfamilies, with a majority of birch U and F subfamily members according to gene structure, conserved motifs and evolutionary analysis. GST family genes showed collinearity with 22 genes in <i>Oryza sativa</i> L., and three genes in <i>Arabidopsis thaliana</i>; promoter <i>cis</i>-acting elements predicted that the GST gene family is functional in growth, hormone regulation, and abiotic stress response. Most members of the F subfamily of <i>GST</i> (<i>BpGSTFs</i>) were expressed in roots, stems, leaves, and petioles, with the most expression observed in leaves. On the basis of the expression profiles of F subfamily genes (<i>BpGSTF1</i> to <i>BpGSTF13</i>) during salt, mannitol and ABA stress, <i>BpGSTF</i> proteins seem to have multiple functions depending on the type of abiotic stress; for instance, <i>BpGSTs</i> may function at different times during abiotic stress. This study enhances understanding of the GST gene family and provides a basis for further exploration of their function in birch.</p>","PeriodicalId":15830,"journal":{"name":"Journal of Forestry Research","volume":"31 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Forestry Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11676-024-01767-x","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Glutathione-S-transferase (GST, EC2.5.1.18) multifunctional protease is important for detoxification, defense against biotic and abiotic stresses, and secondary metabolic material transport for plant growth and development. In this study, 71 members of the BpGST family were identified from the entire Betula platyphylla Suk. genome. Most of the members encode proteins with amino acid lengths ranging from 101 to 875 and were localized to the cytoplasm by a prediction. BpGSTs can be divided into seven subfamilies, with a majority of birch U and F subfamily members according to gene structure, conserved motifs and evolutionary analysis. GST family genes showed collinearity with 22 genes in Oryza sativa L., and three genes in Arabidopsis thaliana; promoter cis-acting elements predicted that the GST gene family is functional in growth, hormone regulation, and abiotic stress response. Most members of the F subfamily of GST (BpGSTFs) were expressed in roots, stems, leaves, and petioles, with the most expression observed in leaves. On the basis of the expression profiles of F subfamily genes (BpGSTF1 to BpGSTF13) during salt, mannitol and ABA stress, BpGSTF proteins seem to have multiple functions depending on the type of abiotic stress; for instance, BpGSTs may function at different times during abiotic stress. This study enhances understanding of the GST gene family and provides a basis for further exploration of their function in birch.
期刊介绍:
The Journal of Forestry Research (JFR), founded in 1990, is a peer-reviewed quarterly journal in English. JFR has rapidly emerged as an international journal published by Northeast Forestry University and Ecological Society of China in collaboration with Springer Verlag. The journal publishes scientific articles related to forestry for a broad range of international scientists, forest managers and practitioners.The scope of the journal covers the following five thematic categories and 20 subjects:
Basic Science of Forestry,
Forest biometrics,
Forest soils,
Forest hydrology,
Tree physiology,
Forest biomass, carbon, and bioenergy,
Forest biotechnology and molecular biology,
Forest Ecology,
Forest ecology,
Forest ecological services,
Restoration ecology,
Forest adaptation to climate change,
Wildlife ecology and management,
Silviculture and Forest Management,
Forest genetics and tree breeding,
Silviculture,
Forest RS, GIS, and modeling,
Forest management,
Forest Protection,
Forest entomology and pathology,
Forest fire,
Forest resources conservation,
Forest health monitoring and assessment,
Wood Science and Technology,
Wood Science and Technology.