{"title":"Dynamics of a multi-strain HIV/AIDS epidemic model with treatment and its adherence","authors":"Ashish Poonia, Siddhartha P. Chakrabarty","doi":"10.1140/epjp/s13360-024-05566-5","DOIUrl":null,"url":null,"abstract":"<div><p>This study presents a novel two-strain nonlinear mathematical model to assess the impact of treatment availability and adherence, on the spread of human immunodeficiency virus (HIV) in a community. First, we establish the well-posedness of the proposed model in an epidemiological context. The basic reproduction number for both the strains is determined by the next-generation matrix approach. The local and global analysis of existent equilibrium points using stability and bifurcation theory suggests that the drug-sensitive infected population faces competitive exclusion at lower relative transmission rates of this strain. For higher relative transmission rates of the infection, both infected populations coexist for a long time. The system exhibits transcritical bifurcation and Hopf bifurcation at multiple points with respect to various model parameters. Finally, we validate all the analytical results with an extensive numerical analysis using MATLAB R2023b. In summary, this study provides various conditions for applying different strategies to control the overall disease burden from the system.</p></div>","PeriodicalId":792,"journal":{"name":"The European Physical Journal Plus","volume":"139 8","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal Plus","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjp/s13360-024-05566-5","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents a novel two-strain nonlinear mathematical model to assess the impact of treatment availability and adherence, on the spread of human immunodeficiency virus (HIV) in a community. First, we establish the well-posedness of the proposed model in an epidemiological context. The basic reproduction number for both the strains is determined by the next-generation matrix approach. The local and global analysis of existent equilibrium points using stability and bifurcation theory suggests that the drug-sensitive infected population faces competitive exclusion at lower relative transmission rates of this strain. For higher relative transmission rates of the infection, both infected populations coexist for a long time. The system exhibits transcritical bifurcation and Hopf bifurcation at multiple points with respect to various model parameters. Finally, we validate all the analytical results with an extensive numerical analysis using MATLAB R2023b. In summary, this study provides various conditions for applying different strategies to control the overall disease burden from the system.
期刊介绍:
The aims of this peer-reviewed online journal are to distribute and archive all relevant material required to document, assess, validate and reconstruct in detail the body of knowledge in the physical and related sciences.
The scope of EPJ Plus encompasses a broad landscape of fields and disciplines in the physical and related sciences - such as covered by the topical EPJ journals and with the explicit addition of geophysics, astrophysics, general relativity and cosmology, mathematical and quantum physics, classical and fluid mechanics, accelerator and medical physics, as well as physics techniques applied to any other topics, including energy, environment and cultural heritage.