{"title":"Two-dimensional carbonitride MXenes: From synthesis to properties and applications","authors":"Weiwei Zhang, Shibo Li, Xiachen Fan, Xuejin Zhang, Shukai Fan, Guoping Bei","doi":"10.1002/cey2.609","DOIUrl":null,"url":null,"abstract":"Carbonitride MXenes, such as Ti<sub>3</sub>CNT<sub><i>x</i></sub>, Ti<sub>2</sub>C<sub>0.5</sub>N<sub>0.5</sub>T<sub><i>x</i></sub>, and Ti<sub>4</sub>(C<sub>0.2</sub>N<sub>0.8</sub>)<sub>3</sub>T<sub><i>x</i></sub>, have attracted much interest in the large family of two-dimensional (2D) nanomaterials. Like their carbide MXene counterparts, the nanolayered structure and functional groups endow carbonitride MXenes with an attractive combination of physical and chemical properties. More interestingly, the replacement of C by N changes the lattice parameters and electron distribution of carbonitride MXenes due to the greater electronegativity of N as compared to C, thus resulting in significantly enhanced functional properties. This paper reviews the development of carbonitride MXenes, the preparation of 2D carbonitride MXenes, and the current understanding of the microstructure, electronic structure, and functional properties of carbonitride MXenes. In addition, applications, especially in energy storage, sensors, catalysts, electromagnetic wave shielding and absorption, fillers, and environmental and biomedical fields, are summarized. Finally, their current limitations and future opportunities are presented.","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":"269 1","pages":""},"PeriodicalIF":19.5000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/cey2.609","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Carbonitride MXenes, such as Ti3CNTx, Ti2C0.5N0.5Tx, and Ti4(C0.2N0.8)3Tx, have attracted much interest in the large family of two-dimensional (2D) nanomaterials. Like their carbide MXene counterparts, the nanolayered structure and functional groups endow carbonitride MXenes with an attractive combination of physical and chemical properties. More interestingly, the replacement of C by N changes the lattice parameters and electron distribution of carbonitride MXenes due to the greater electronegativity of N as compared to C, thus resulting in significantly enhanced functional properties. This paper reviews the development of carbonitride MXenes, the preparation of 2D carbonitride MXenes, and the current understanding of the microstructure, electronic structure, and functional properties of carbonitride MXenes. In addition, applications, especially in energy storage, sensors, catalysts, electromagnetic wave shielding and absorption, fillers, and environmental and biomedical fields, are summarized. Finally, their current limitations and future opportunities are presented.
期刊介绍:
Carbon Energy is an international journal that focuses on cutting-edge energy technology involving carbon utilization and carbon emission control. It provides a platform for researchers to communicate their findings and critical opinions and aims to bring together the communities of advanced material and energy. The journal covers a broad range of energy technologies, including energy storage, photocatalysis, electrocatalysis, photoelectrocatalysis, and thermocatalysis. It covers all forms of energy, from conventional electric and thermal energy to those that catalyze chemical and biological transformations. Additionally, Carbon Energy promotes new technologies for controlling carbon emissions and the green production of carbon materials. The journal welcomes innovative interdisciplinary research with wide impact. It is indexed in various databases, including Advanced Technologies & Aerospace Collection/Database, Biological Science Collection/Database, CAS, DOAJ, Environmental Science Collection/Database, Web of Science and Technology Collection.