Ethnography beyond thick data

IF 0.7 Q3 ANTHROPOLOGY
Ajda Pretnar Žagar, Dan Podjed
{"title":"Ethnography beyond thick data","authors":"Ajda Pretnar Žagar,&nbsp;Dan Podjed","doi":"10.1111/napa.12226","DOIUrl":null,"url":null,"abstract":"<p>This article presents opportunities for enriching anthropological knowledge and methods with machine learning and data analysis. Different examples show how quantitative methods empower anthropologists and how computational methods supplement ethnography, from sensor data and interview transcripts to designing technology solutions and automatically labeling cultural heritage. Conversely, the authors discuss the benefits of qualitative approaches in contemporary anthropological research and show how to transition from data analysis to ethnography and <i>vice versa</i>. Finally, the article pinpoints aspects in which each method can fail individually. It discusses why a combination of the two approaches, called circular mixed methods, minimizes the chance of failure and maximizes insights from the data.</p>","PeriodicalId":45176,"journal":{"name":"Annals of Anthropological Practice","volume":"48 2","pages":"272-288"},"PeriodicalIF":0.7000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/napa.12226","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Anthropological Practice","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/napa.12226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ANTHROPOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This article presents opportunities for enriching anthropological knowledge and methods with machine learning and data analysis. Different examples show how quantitative methods empower anthropologists and how computational methods supplement ethnography, from sensor data and interview transcripts to designing technology solutions and automatically labeling cultural heritage. Conversely, the authors discuss the benefits of qualitative approaches in contemporary anthropological research and show how to transition from data analysis to ethnography and vice versa. Finally, the article pinpoints aspects in which each method can fail individually. It discusses why a combination of the two approaches, called circular mixed methods, minimizes the chance of failure and maximizes insights from the data.

Abstract Image

超越厚重数据的人种学
本文介绍了利用机器学习和数据分析丰富人类学知识和方法的机会。从传感器数据和访谈记录到设计技术解决方案和自动标注文化遗产,不同的例子展示了定量方法如何增强人类学家的能力,以及计算方法如何补充人种学。相反,作者讨论了定性方法在当代人类学研究中的优势,并展示了如何从数据分析过渡到人种学研究,反之亦然。最后,文章指出了每种方法各自可能失败的方面。文章讨论了为什么将这两种方法结合起来(称为循环混合方法)可以将失败的几率降到最低,并从数据中获得最大的启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
14.30%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信