Disrupted Human–Dog Interbrain Neural Coupling in Autism-Associated Shank3 Mutant Dogs

IF 14.3 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Wei Ren, Shan Yu, Kun Guo, Chunming Lu, Yong Q. Zhang
{"title":"Disrupted Human–Dog Interbrain Neural Coupling in Autism-Associated Shank3 Mutant Dogs","authors":"Wei Ren,&nbsp;Shan Yu,&nbsp;Kun Guo,&nbsp;Chunming Lu,&nbsp;Yong Q. Zhang","doi":"10.1002/advs.202402493","DOIUrl":null,"url":null,"abstract":"<p>Dogs interact with humans effectively and intimately. However, the neural underpinnings for such interspecies social communication are not understood. It is known that interbrain activity coupling, i.e., the synchronization of neural activity between individuals, represents the neural basis of social interactions. Here, previously unknown cross-species interbrain activity coupling in interacting human–dog dyads is reported. By analyzing electroencephalography signals from both dogs and humans, it is found that mutual gaze and petting induce interbrain synchronization in the frontal and parietal regions of the human–dog dyads, respectively. The strength of the synchronization increases with growing familiarity of the human–dog dyad over five days, and the information flow analysis suggests that the human is the leader while the dog is the follower during human–dog interactions. Furthermore, dogs with <i>Shank3</i> mutations, which represent a promising complementary animal model of autism spectrum disorders (ASD), show a loss of interbrain coupling and reduced attention during human–dog interactions. Such abnormalities are rescued by the psychedelic lysergic acid diethylamide (LSD). The results reveal previously unknown interbrain synchronizations within an interacting human–dog dyad which may underlie the interspecies communication, and suggest a potential of LSD for the amelioration of social impairment in patients with ASD.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":"11 41","pages":""},"PeriodicalIF":14.3000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/advs.202402493","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/advs.202402493","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Dogs interact with humans effectively and intimately. However, the neural underpinnings for such interspecies social communication are not understood. It is known that interbrain activity coupling, i.e., the synchronization of neural activity between individuals, represents the neural basis of social interactions. Here, previously unknown cross-species interbrain activity coupling in interacting human–dog dyads is reported. By analyzing electroencephalography signals from both dogs and humans, it is found that mutual gaze and petting induce interbrain synchronization in the frontal and parietal regions of the human–dog dyads, respectively. The strength of the synchronization increases with growing familiarity of the human–dog dyad over five days, and the information flow analysis suggests that the human is the leader while the dog is the follower during human–dog interactions. Furthermore, dogs with Shank3 mutations, which represent a promising complementary animal model of autism spectrum disorders (ASD), show a loss of interbrain coupling and reduced attention during human–dog interactions. Such abnormalities are rescued by the psychedelic lysergic acid diethylamide (LSD). The results reveal previously unknown interbrain synchronizations within an interacting human–dog dyad which may underlie the interspecies communication, and suggest a potential of LSD for the amelioration of social impairment in patients with ASD.

Abstract Image

Abstract Image

自闭症相关 Shank3 突变体狗的人狗脑间神经耦合受损
狗与人类进行有效而亲密的互动。然而,人们并不了解这种种间社会交流的神经基础。众所周知,脑间活动耦合(即个体间神经活动的同步)是社会互动的神经基础。这里报告的是以前未知的人狗双人互动中的跨物种脑间活动耦合。通过分析狗和人的脑电图信号,研究发现相互凝视和爱抚分别在人狗二人组的额叶区和顶叶区引起脑间同步。信息流分析表明,在人狗互动过程中,人是领导者,而狗是追随者。此外,Shank3突变的狗是自闭症谱系障碍(ASD)的一种很有希望的互补动物模型,它们在人狗互动过程中表现出脑间耦合缺失和注意力下降。迷幻药麦角酰二乙胺(LSD)可以缓解这种异常。研究结果揭示了人狗互动过程中未知的脑间同步,这可能是种间交流的基础,并表明迷幻剂有可能改善自闭症患者的社交障碍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信