Critical and reentrant phenomena in the Blume–Emery–Griffiths model with attractive biquadratic interaction

IF 1.6 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER
E. M. Jalal, H. Saadi, A. Hasnaoui, A. Lafhal, N. Hachem, M. El Bouziani
{"title":"Critical and reentrant phenomena in the Blume–Emery–Griffiths model with attractive biquadratic interaction","authors":"E. M. Jalal,&nbsp;H. Saadi,&nbsp;A. Hasnaoui,&nbsp;A. Lafhal,&nbsp;N. Hachem,&nbsp;M. El Bouziani","doi":"10.1140/epjb/s10051-024-00767-4","DOIUrl":null,"url":null,"abstract":"<p>Using the mean field approximation based on the Bogoliubov inequality for free energy, we investigate the effects of the biquadratic exchange interaction on the critical behavior and phase diagram of the mixed spin (1,2) Blume–Emery–Griffiths model. We first focus on a specific case of the model: when the interaction parameter <span>\\(K=0\\)</span>, corresponding to the Blume–Capel model. For the attractive Blume–Emery–Griffiths model, we present the phase diagram in the temperature-crystal field plane. The phase diagram is significantly influenced by the value of the biquadratic exchange interaction <i>K</i>. For small values of <i>K</i>, similar to the Blume–Capel model, the phase diagram exhibits first and second order phase transition lines separating ordered and disordered phases, with a tricritical point marking the boundary between these regions. As <i>K</i> increases, the phase diagram changes significantly, with the appearance of reentrant and double reentrant phenomena.</p>","PeriodicalId":787,"journal":{"name":"The European Physical Journal B","volume":"97 8","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal B","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjb/s10051-024-00767-4","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

Using the mean field approximation based on the Bogoliubov inequality for free energy, we investigate the effects of the biquadratic exchange interaction on the critical behavior and phase diagram of the mixed spin (1,2) Blume–Emery–Griffiths model. We first focus on a specific case of the model: when the interaction parameter \(K=0\), corresponding to the Blume–Capel model. For the attractive Blume–Emery–Griffiths model, we present the phase diagram in the temperature-crystal field plane. The phase diagram is significantly influenced by the value of the biquadratic exchange interaction K. For small values of K, similar to the Blume–Capel model, the phase diagram exhibits first and second order phase transition lines separating ordered and disordered phases, with a tricritical point marking the boundary between these regions. As K increases, the phase diagram changes significantly, with the appearance of reentrant and double reentrant phenomena.

Abstract Image

Abstract Image

布卢姆-埃默里-格里菲斯模型中的临界和重入现象与有吸引力的双二次方相互作用
摘要利用基于自由能波哥留波夫不等式的均场近似,我们研究了双二次交换相互作用对混合自旋(1,2)布卢姆-埃默里-格里菲斯模型的临界行为和相图的影响。我们首先关注模型的一种特殊情况:当相互作用参数 (K=0\)时,与布卢姆-卡佩尔模型相对应。对于有吸引力的布卢姆-埃默里-格里菲斯模型,我们给出了温度-晶体场平面上的相图。在 K 值较小的情况下,与 Blume-Capel 模型类似,相图呈现出一阶和二阶相变线,将有序相和无序相分开,三临界点标志着这些区域的边界。图文摘要在混合自旋-1 和自旋-2 布卢姆-卡佩尔模型上存在双四次方相互作用会产生一些重要现象;系统呈现不同的相变,即一阶、二阶和重入现象;确定了单离子各向异性和双四次方相互作用对磁化的影响;并与其他近似结果进行了讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The European Physical Journal B
The European Physical Journal B 物理-物理:凝聚态物理
CiteScore
2.80
自引率
6.20%
发文量
184
审稿时长
5.1 months
期刊介绍: Solid State and Materials; Mesoscopic and Nanoscale Systems; Computational Methods; Statistical and Nonlinear Physics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信