Band gap of ion-doped La\(_2\)NiMnO\(_6\) nanoparticles

IF 1.6 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER
A. T. Apostolov, I. N. Apostolova, J. M. Wesselinowa
{"title":"Band gap of ion-doped La\\(_2\\)NiMnO\\(_6\\) nanoparticles","authors":"A. T. Apostolov,&nbsp;I. N. Apostolova,&nbsp;J. M. Wesselinowa","doi":"10.1140/epjb/s10051-024-00769-2","DOIUrl":null,"url":null,"abstract":"<p>We have studied theoretically the magnetization <i>M</i> and the band gap energy <span>\\(E_g\\)</span> in dependence on temperature, size and ion doping concentration in the double perovskite La<span>\\(_2\\)</span>NiMnO<span>\\(_6\\)</span> (LNMO)—bulk and nanoparticles. LNMO is a ferromagnetic semiconductor. Therefore, it is appropriate to use for describing its properties the <span>\\(s-d(f)\\)</span> model. The method for the calculation of <i>M</i> and <span>\\(E_g\\)</span> is the Green’s function theory within we are able to make a finite temperature analysis of the excitation spectrum and of all physical quantities. The temperature-dependent Matsubara Green’s function formalism can be used for describing the temperature-dependent behavior of realistic systems in thermal equilibrium. <i>M</i> increases with decreasing the nanoparticle size. <span>\\(E_g\\)</span> decreases with increasing temperature. For nanoparticles, it is smaller than that of bulk LNMO. Doping with Sr ions at the La site reduces <i>M</i> and enhances <span>\\(E_g\\)</span>. The band gap decreases by Sc ion doping at the La site. The substitution with different ions at the Ni site can also tune <span>\\(E_g\\)</span>. For example, doping with Fe or Sc ion increases <span>\\(E_g\\)</span>, whereas by Co, doping <span>\\(E_g\\)</span> decreases. Substitution by the same ion at different sites, A or B (La or Ni) leads to different behavior of the band gap. It is shown that Sr-, Ba-, Ca-, and Y-doped LNMO NPs with a band gap of <span>\\(\\sim \\)</span> 1.4 eV are appropriate for application in solar cells. Comparison to the existing experimental data is made.</p>","PeriodicalId":787,"journal":{"name":"The European Physical Journal B","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal B","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjb/s10051-024-00769-2","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

We have studied theoretically the magnetization M and the band gap energy \(E_g\) in dependence on temperature, size and ion doping concentration in the double perovskite La\(_2\)NiMnO\(_6\) (LNMO)—bulk and nanoparticles. LNMO is a ferromagnetic semiconductor. Therefore, it is appropriate to use for describing its properties the \(s-d(f)\) model. The method for the calculation of M and \(E_g\) is the Green’s function theory within we are able to make a finite temperature analysis of the excitation spectrum and of all physical quantities. The temperature-dependent Matsubara Green’s function formalism can be used for describing the temperature-dependent behavior of realistic systems in thermal equilibrium. M increases with decreasing the nanoparticle size. \(E_g\) decreases with increasing temperature. For nanoparticles, it is smaller than that of bulk LNMO. Doping with Sr ions at the La site reduces M and enhances \(E_g\). The band gap decreases by Sc ion doping at the La site. The substitution with different ions at the Ni site can also tune \(E_g\). For example, doping with Fe or Sc ion increases \(E_g\), whereas by Co, doping \(E_g\) decreases. Substitution by the same ion at different sites, A or B (La or Ni) leads to different behavior of the band gap. It is shown that Sr-, Ba-, Ca-, and Y-doped LNMO NPs with a band gap of \(\sim \) 1.4 eV are appropriate for application in solar cells. Comparison to the existing experimental data is made.

Abstract Image

Abstract Image

离子掺杂 La $$_2$$ NiMnO $$_6$$ 纳米粒子的带隙
Abstract We have studied theoretically the magnetization M and the band gap energy \(E_g\) in dependence on temperature, size and ion doping concentration in the double perovskite La\(_2\)NiMnO\(_6\) (LNMO)-bulk and nanoparticles.LNMO 是一种铁磁性半导体。因此,用(s-d(f))模型来描述它的特性是合适的。计算 M 和 (E_g\)的方法是格林函数理论,我们能够对激发光谱和所有物理量进行有限温度分析。与温度相关的松原格林函数形式主义可用于描述热平衡中现实系统与温度相关的行为。M 随着纳米粒子尺寸的减小而增大。\(E_g\) 随温度升高而减小。对于纳米颗粒来说,它小于块状 LNMO。在 La 位点掺入 Sr 离子会降低 M 值并增强 \(E_g\)。在 La 位点掺入 Sc 离子会减小带隙。在 Ni 位点掺入不同的离子也可以调节 \(E_g\)。例如,掺入 Fe 或 Sc 离子会增加 \(E_g\),而掺入 Co 离子会减小 \(E_g\)。在不同的位点(A 或 B(La 或 Ni))掺入相同的离子会导致带隙的不同行为。研究表明,Sr-、Ba-、Ca-和 Y 掺杂的 LNMO NPs 带隙为 1.4 eV,适合应用于太阳能电池。图文摘要
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The European Physical Journal B
The European Physical Journal B 物理-物理:凝聚态物理
CiteScore
2.80
自引率
6.20%
发文量
184
审稿时长
5.1 months
期刊介绍: Solid State and Materials; Mesoscopic and Nanoscale Systems; Computational Methods; Statistical and Nonlinear Physics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信