Irfan Wazeer, Lahssen El blidi, Sarwono Mulyono, Ahmed Halilu, Hanee Farzana Hizaddin, Mohd Ali Hashim, Mohamed K. Hadj-Kali
{"title":"Comparative analysis of lead and cadmium extraction capacities of hydrophobic deep eutectic solvents","authors":"Irfan Wazeer, Lahssen El blidi, Sarwono Mulyono, Ahmed Halilu, Hanee Farzana Hizaddin, Mohd Ali Hashim, Mohamed K. Hadj-Kali","doi":"10.1016/j.jiec.2024.08.033","DOIUrl":null,"url":null,"abstract":"In this study, a total of eight hydrophobic deep eutectic solvents (HDESs) were prepared and evaluated for their efficacy in extracting lead and cadmium from aqueous solutions. The physical and thermal properties of these HDESs were characterized. Among the HDESs tested, the thymol:decanoic acid system, with a molar ratio of 1:1, exhibited the highest distribution ratios for lead and cadmium, with values of 0.79 and 0.55, respectively. The extraction performance of the thymol:decanoic acid system was further investigated by considering various factors such as contact time, pH, mass ratio of water to HDES, and HDES molar ratio. After optimization, the thymol:decanoic acid HDES demonstrated significantly improved extraction efficiency for lead (up to 93.49 %) and cadmium (up to 76.70 %) at initial concentrations of 1000 ppm and 100 ppm, respectively. The extraction mechanism was found to be primarily driven by the complexation and partitioning effects of thymol:decanoic acid with lead or cadmium, as confirmed by the noticeable changes in harmonic frequencies (730, 1337, and 1515 cm) observed in the IR spectra analysis before and after extraction. Additionally, the performance of the thymol:decanoic acid HDES was evaluated through solvent regeneration using a multi-stage extraction and reuse approach.","PeriodicalId":363,"journal":{"name":"Journal of Industrial and Engineering Chemistry","volume":"50 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial and Engineering Chemistry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.jiec.2024.08.033","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, a total of eight hydrophobic deep eutectic solvents (HDESs) were prepared and evaluated for their efficacy in extracting lead and cadmium from aqueous solutions. The physical and thermal properties of these HDESs were characterized. Among the HDESs tested, the thymol:decanoic acid system, with a molar ratio of 1:1, exhibited the highest distribution ratios for lead and cadmium, with values of 0.79 and 0.55, respectively. The extraction performance of the thymol:decanoic acid system was further investigated by considering various factors such as contact time, pH, mass ratio of water to HDES, and HDES molar ratio. After optimization, the thymol:decanoic acid HDES demonstrated significantly improved extraction efficiency for lead (up to 93.49 %) and cadmium (up to 76.70 %) at initial concentrations of 1000 ppm and 100 ppm, respectively. The extraction mechanism was found to be primarily driven by the complexation and partitioning effects of thymol:decanoic acid with lead or cadmium, as confirmed by the noticeable changes in harmonic frequencies (730, 1337, and 1515 cm) observed in the IR spectra analysis before and after extraction. Additionally, the performance of the thymol:decanoic acid HDES was evaluated through solvent regeneration using a multi-stage extraction and reuse approach.
期刊介绍:
Journal of Industrial and Engineering Chemistry is published monthly in English by the Korean Society of Industrial and Engineering Chemistry. JIEC brings together multidisciplinary interests in one journal and is to disseminate information on all aspects of research and development in industrial and engineering chemistry. Contributions in the form of research articles, short communications, notes and reviews are considered for publication. The editors welcome original contributions that have not been and are not to be published elsewhere. Instruction to authors and a manuscript submissions form are printed at the end of each issue. Bulk reprints of individual articles can be ordered. This publication is partially supported by Korea Research Foundation and the Korean Federation of Science and Technology Societies.