Kyung Soo Kim, In Woo Lee, Bo Kyoung Kim, Tae-Sung Bae, Young-Seak Lee
{"title":"Synergistic effect of reducing volume expansion and improving electrochemical performance through a LiF-based SEI formation on SiOx/C electrodes","authors":"Kyung Soo Kim, In Woo Lee, Bo Kyoung Kim, Tae-Sung Bae, Young-Seak Lee","doi":"10.1016/j.jiec.2024.08.047","DOIUrl":null,"url":null,"abstract":"SiOx/C electrodes are widely used due to their high lithium storage capacities and cycling stabilities. However, the SiOx/C electrode exhibits large volume expansion and unstable SEI layer formation during cycling. In this work, a carbon tetrafluoride (CF) plasma was used to introduce C-F bonds onto the electrode surface to form a LiF-based SEI layer on a SiOx/C electrode (SGE) to improve its mechanical and electrochemical properties. The fluorinated SiOx/C electrode (FSGE) subjected to the CF plasma treatment for 10 min mitigated 2.5 times the volume expansion compared to the SGE by forming a LiF-based SEI layer to increase the mechanical properties. This mitigation of FSGE volume expansion resulted in excellent long-term cycling stability of 83 % for 100 cycles (1C). In addition, the LiF-based SEI layer formed on the FSGE increased the mobility of Li ions, resulting in 1.2 times better cycle stability than that of SGE at a high rate (10C). Thus, the improvement in the electrochemical performance achieved by reducing the volume expansion of SiOx in the electrode and enhancing the Li-ion conductivity was attributed to the stable LiF SEI layer formed with semi-ionic CF bonds introduced by the CF plasma.","PeriodicalId":363,"journal":{"name":"Journal of Industrial and Engineering Chemistry","volume":"17 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial and Engineering Chemistry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.jiec.2024.08.047","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
SiOx/C electrodes are widely used due to their high lithium storage capacities and cycling stabilities. However, the SiOx/C electrode exhibits large volume expansion and unstable SEI layer formation during cycling. In this work, a carbon tetrafluoride (CF) plasma was used to introduce C-F bonds onto the electrode surface to form a LiF-based SEI layer on a SiOx/C electrode (SGE) to improve its mechanical and electrochemical properties. The fluorinated SiOx/C electrode (FSGE) subjected to the CF plasma treatment for 10 min mitigated 2.5 times the volume expansion compared to the SGE by forming a LiF-based SEI layer to increase the mechanical properties. This mitigation of FSGE volume expansion resulted in excellent long-term cycling stability of 83 % for 100 cycles (1C). In addition, the LiF-based SEI layer formed on the FSGE increased the mobility of Li ions, resulting in 1.2 times better cycle stability than that of SGE at a high rate (10C). Thus, the improvement in the electrochemical performance achieved by reducing the volume expansion of SiOx in the electrode and enhancing the Li-ion conductivity was attributed to the stable LiF SEI layer formed with semi-ionic CF bonds introduced by the CF plasma.
期刊介绍:
Journal of Industrial and Engineering Chemistry is published monthly in English by the Korean Society of Industrial and Engineering Chemistry. JIEC brings together multidisciplinary interests in one journal and is to disseminate information on all aspects of research and development in industrial and engineering chemistry. Contributions in the form of research articles, short communications, notes and reviews are considered for publication. The editors welcome original contributions that have not been and are not to be published elsewhere. Instruction to authors and a manuscript submissions form are printed at the end of each issue. Bulk reprints of individual articles can be ordered. This publication is partially supported by Korea Research Foundation and the Korean Federation of Science and Technology Societies.