Polypyrrole-decorated carbonized cotton fabric derived from air atmosphere for tunable electromagnetic interference shielding performance and high fire safety
JiaYu Lu, Jin Yu, Ziqing Jiang, Yan Zhang, Hao Zhang, Yihao Yu, Dongming Qi, Jianming Wang
{"title":"Polypyrrole-decorated carbonized cotton fabric derived from air atmosphere for tunable electromagnetic interference shielding performance and high fire safety","authors":"JiaYu Lu, Jin Yu, Ziqing Jiang, Yan Zhang, Hao Zhang, Yihao Yu, Dongming Qi, Jianming Wang","doi":"10.1007/s10570-024-06150-x","DOIUrl":null,"url":null,"abstract":"<div><p>With the escalating prevalence of electromagnetic radiation pollution, flexible electromagnetic interference (EMI) shielding materials hold immense potential for widespread application. Carbonized fabric possesses notable advantages such as flexibility, excellent electrical conductivity, and chemica<u>l</u> stability. However, its traditional preparation process is characterized by high energy consumption, intricate atmospheric conditions, and prolonged duration. This study introduces a novel approach of incorporating intumescent flame retardant (IFR) into cotton fabric, aiming to facilitate rapid carbonization in an air atmosphere. Remarkably, this innovative approach yields an outstanding total EMI shielding effectiveness (SE<sub>T</sub>) of 17.55 dB within a mere 5 min carbonization process at 900 °C under ambient air conditions. Moreover, in order to enhance the shielding effect, we conducted in-situ growth of polypyrrole (PPy) on the prepared carbonized fabric. The deposition time of 120 min resulted in an impressive SE<sub>T</sub> value of 28.22 dB, effectively providing a shielding capability of up to 99.9% against electromagnetic waves (EMW). Moreover, the SE<sub>T</sub> value of IFR-C-PPy-60 min can be enhanced to 51.84 dB by stacking 4 layers, enabling the attenuation of 99.999% of EMW. The IFR-C-PPy also demonstrated exceptional fire safety and thermal stability. This study presents a novel approach for the rapid and large-scale fabrication of highly efficient conductive carbonized fabric, which demonstrates potential applications in flexible electronic devices.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":511,"journal":{"name":"Cellulose","volume":"31 15","pages":"9215 - 9232"},"PeriodicalIF":4.9000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellulose","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10570-024-06150-x","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
引用次数: 0
Abstract
With the escalating prevalence of electromagnetic radiation pollution, flexible electromagnetic interference (EMI) shielding materials hold immense potential for widespread application. Carbonized fabric possesses notable advantages such as flexibility, excellent electrical conductivity, and chemical stability. However, its traditional preparation process is characterized by high energy consumption, intricate atmospheric conditions, and prolonged duration. This study introduces a novel approach of incorporating intumescent flame retardant (IFR) into cotton fabric, aiming to facilitate rapid carbonization in an air atmosphere. Remarkably, this innovative approach yields an outstanding total EMI shielding effectiveness (SET) of 17.55 dB within a mere 5 min carbonization process at 900 °C under ambient air conditions. Moreover, in order to enhance the shielding effect, we conducted in-situ growth of polypyrrole (PPy) on the prepared carbonized fabric. The deposition time of 120 min resulted in an impressive SET value of 28.22 dB, effectively providing a shielding capability of up to 99.9% against electromagnetic waves (EMW). Moreover, the SET value of IFR-C-PPy-60 min can be enhanced to 51.84 dB by stacking 4 layers, enabling the attenuation of 99.999% of EMW. The IFR-C-PPy also demonstrated exceptional fire safety and thermal stability. This study presents a novel approach for the rapid and large-scale fabrication of highly efficient conductive carbonized fabric, which demonstrates potential applications in flexible electronic devices.
期刊介绍:
Cellulose is an international journal devoted to the dissemination of research and scientific and technological progress in the field of cellulose and related naturally occurring polymers. The journal is concerned with the pure and applied science of cellulose and related materials, and also with the development of relevant new technologies. This includes the chemistry, biochemistry, physics and materials science of cellulose and its sources, including wood and other biomass resources, and their derivatives. Coverage extends to the conversion of these polymers and resources into manufactured goods, such as pulp, paper, textiles, and manufactured as well natural fibers, and to the chemistry of materials used in their processing. Cellulose publishes review articles, research papers, and technical notes.