{"title":"Pseudo-differential integral autoencoder network for inverse PDE operators","authors":"Ke Chen, Jasen Lai, Chunmei Wang","doi":"10.1088/1361-6420/ad7056","DOIUrl":null,"url":null,"abstract":"Partial differential equations (PDEs) play a foundational role in modeling physical phenomena. This study addresses the challenging task of determining variable coefficients within PDEs from measurement data. We introduce a novel neural network, ‘pseudo-differential IAEnet’ (pd-IAEnet), which draws inspiration from pseudo-differential operators. pd-IAEnet achieves significantly enhanced computational speed and accuracy with fewer parameters compared to conventional models. Extensive benchmark evaluations are conducted across a range of inverse problems, including electrical impedance tomography, optical tomography, and seismic imaging, consistently demonstrating pd-IAEnet’s superior accuracy. Notably, pd-IAEnet exhibits robustness in the presence of measurement noise, a critical characteristic for real-world applications. An exceptional feature is its discretization invariance, enabling effective training on data from diverse discretization schemes while maintaining accuracy on different meshes. In summary, pd-IAEnet offers a potent and efficient solution for addressing inverse PDE problems, contributing to improved computational efficiency, robustness, and adaptability to a wide array of data sources.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1088/1361-6420/ad7056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Partial differential equations (PDEs) play a foundational role in modeling physical phenomena. This study addresses the challenging task of determining variable coefficients within PDEs from measurement data. We introduce a novel neural network, ‘pseudo-differential IAEnet’ (pd-IAEnet), which draws inspiration from pseudo-differential operators. pd-IAEnet achieves significantly enhanced computational speed and accuracy with fewer parameters compared to conventional models. Extensive benchmark evaluations are conducted across a range of inverse problems, including electrical impedance tomography, optical tomography, and seismic imaging, consistently demonstrating pd-IAEnet’s superior accuracy. Notably, pd-IAEnet exhibits robustness in the presence of measurement noise, a critical characteristic for real-world applications. An exceptional feature is its discretization invariance, enabling effective training on data from diverse discretization schemes while maintaining accuracy on different meshes. In summary, pd-IAEnet offers a potent and efficient solution for addressing inverse PDE problems, contributing to improved computational efficiency, robustness, and adaptability to a wide array of data sources.