Inverse source problem for discrete Helmholtz equation

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Roman Novikov, Basant Lal Sharma
{"title":"Inverse source problem for discrete Helmholtz equation","authors":"Roman Novikov, Basant Lal Sharma","doi":"10.1088/1361-6420/ad7054","DOIUrl":null,"url":null,"abstract":"We consider multi-frequency inverse source problem for the discrete Helmholtz operator on the square lattice <inline-formula>\n<tex-math><?CDATA $\\mathbb{Z}^d$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:msup><mml:mrow><mml:mi mathvariant=\"double-struck\">Z</mml:mi></mml:mrow><mml:mi>d</mml:mi></mml:msup></mml:mrow></mml:math><inline-graphic xlink:href=\"ipad7054ieqn1.gif\"></inline-graphic></inline-formula>, <inline-formula>\n<tex-math><?CDATA $d \\unicode{x2A7E} 1$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:mi>d</mml:mi><mml:mtext>⩾</mml:mtext><mml:mn>1</mml:mn></mml:mrow></mml:math><inline-graphic xlink:href=\"ipad7054ieqn2.gif\"></inline-graphic></inline-formula>. We consider this problem for the cases with and without phase information. We prove uniqueness results and present examples of non-uniqueness for this problem for the case of compactly supported source function, and a Lipshitz stability estimate for the phased case is established. Relations with inverse scattering problem for the discrete Schrödinger operators in the Born approximation are also provided.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1088/1361-6420/ad7054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider multi-frequency inverse source problem for the discrete Helmholtz operator on the square lattice Zd, d1. We consider this problem for the cases with and without phase information. We prove uniqueness results and present examples of non-uniqueness for this problem for the case of compactly supported source function, and a Lipshitz stability estimate for the phased case is established. Relations with inverse scattering problem for the discrete Schrödinger operators in the Born approximation are also provided.
离散赫尔姆霍兹方程的反源问题
我们考虑的是方阵 Zd, d⩾1 上离散亥姆霍兹算子的多频反源问题。我们考虑了有相位信息和无相位信息的情况。我们证明了该问题在紧凑支撑源函数情况下的唯一性结果,并举例说明了其非唯一性,同时建立了相位情况下的李普希兹稳定性估计。我们还提供了与玻恩近似离散薛定谔算子反散射问题的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信