Bayesian inversion with Student’s t priors based on Gaussian scale mixtures

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Angelina Senchukova, Felipe Uribe and Lassi Roininen
{"title":"Bayesian inversion with Student’s t priors based on Gaussian scale mixtures","authors":"Angelina Senchukova, Felipe Uribe and Lassi Roininen","doi":"10.1088/1361-6420/ad75af","DOIUrl":null,"url":null,"abstract":"Many inverse problems focus on recovering a quantity of interest that is a priori known to exhibit either discontinuous or smooth behavior. Within the Bayesian approach to inverse problems, such structural information can be encoded using Markov random field priors. We propose a class of priors that combine Markov random field structure with Student’s t distribution. This approach offers flexibility in modeling diverse structural behaviors depending on available data. Flexibility is achieved by including the degrees of freedom parameter of Student’s t distribution in the formulation of the Bayesian inverse problem. To facilitate posterior computations, we employ Gaussian scale mixture representation for the Student’s t Markov random field prior, which allows expressing the prior as a conditionally Gaussian distribution depending on auxiliary hyperparameters. Adopting this representation, we can derive most of the posterior conditional distributions in a closed form and utilize the Gibbs sampler to explore the posterior. We illustrate the method with two numerical examples: signal deconvolution and image deblurring.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1088/1361-6420/ad75af","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Many inverse problems focus on recovering a quantity of interest that is a priori known to exhibit either discontinuous or smooth behavior. Within the Bayesian approach to inverse problems, such structural information can be encoded using Markov random field priors. We propose a class of priors that combine Markov random field structure with Student’s t distribution. This approach offers flexibility in modeling diverse structural behaviors depending on available data. Flexibility is achieved by including the degrees of freedom parameter of Student’s t distribution in the formulation of the Bayesian inverse problem. To facilitate posterior computations, we employ Gaussian scale mixture representation for the Student’s t Markov random field prior, which allows expressing the prior as a conditionally Gaussian distribution depending on auxiliary hyperparameters. Adopting this representation, we can derive most of the posterior conditional distributions in a closed form and utilize the Gibbs sampler to explore the posterior. We illustrate the method with two numerical examples: signal deconvolution and image deblurring.
基于高斯尺度混合物的贝叶斯反演与学生 t 先验
许多逆问题的重点是恢复一个先验已知表现出不连续或平滑行为的相关量。在逆问题的贝叶斯方法中,这种结构信息可以用马尔可夫随机场先验来编码。我们提出了一类将马尔可夫随机场结构与 Student's t 分布相结合的先验。这种方法可以根据可用数据,灵活地模拟各种结构行为。灵活性是通过在贝叶斯逆问题的表述中加入 Student's t 分布的自由度参数来实现的。为了方便后验计算,我们采用了高斯尺度混合表示法来表示 Student's t 马尔科夫随机场先验,这样就可以根据辅助超参数将先验表达为条件高斯分布。采用这种表示方法,我们可以以封闭形式推导出大部分后验条件分布,并利用吉布斯采样器探索后验。我们用两个数值示例来说明该方法:信号解卷积和图像去模糊。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信