{"title":"Exact recovery of the support of piecewise constant images via total variation regularization","authors":"Yohann De Castro, Vincent Duval and Romain Petit","doi":"10.1088/1361-6420/ad75b1","DOIUrl":null,"url":null,"abstract":"This work is concerned with the recovery of piecewise constant images from noisy linear measurements. We study the noise robustness of a variational reconstruction method, which is based on total (gradient) variation regularization. We show that, if the unknown image is the superposition of a few simple shapes, and if a non-degenerate source condition holds, then, in the low noise regime, the reconstructed images have the same structure: they are the superposition of the same number of shapes, each a smooth deformation of one of the unknown shapes. Moreover, the reconstructed shapes and the associated intensities converge to the unknown ones as the noise goes to zero.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1088/1361-6420/ad75b1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
This work is concerned with the recovery of piecewise constant images from noisy linear measurements. We study the noise robustness of a variational reconstruction method, which is based on total (gradient) variation regularization. We show that, if the unknown image is the superposition of a few simple shapes, and if a non-degenerate source condition holds, then, in the low noise regime, the reconstructed images have the same structure: they are the superposition of the same number of shapes, each a smooth deformation of one of the unknown shapes. Moreover, the reconstructed shapes and the associated intensities converge to the unknown ones as the noise goes to zero.