Investigation of structural, thermal, magnetic, and dielectric properties of Yb+3 doped nickel cobalt ferrite nanomaterial for electro-magnetic applications

IF 2.8 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Smita Patil, Sunil Meti, Mallikarjun Anandalli, Hanamanta Badiger, Rajashekhar F. Bhajantri, L. Pratheek, Mohammad Muhiuddin, Mohammad Rizwanur Rahman, Balachandra G. Hegde
{"title":"Investigation of structural, thermal, magnetic, and dielectric properties of Yb+3 doped nickel cobalt ferrite nanomaterial for electro-magnetic applications","authors":"Smita Patil,&nbsp;Sunil Meti,&nbsp;Mallikarjun Anandalli,&nbsp;Hanamanta Badiger,&nbsp;Rajashekhar F. Bhajantri,&nbsp;L. Pratheek,&nbsp;Mohammad Muhiuddin,&nbsp;Mohammad Rizwanur Rahman,&nbsp;Balachandra G. Hegde","doi":"10.1007/s10854-024-13389-4","DOIUrl":null,"url":null,"abstract":"<div><p>Herein, we report the synthesis of ytterbium (Yb) (with concentration <i>x</i> = 0.01, 0.015, 0.02, 0.025 and 0.03) doped in to nickel cobalt ferrite (NCYFO: Yb<sub><i>x</i></sub>Ni<sub>0.5</sub>Co<sub>0.5</sub>Fe<sub>2-<i>x</i></sub>O<sub>4</sub>) nanoparticles at temperature 500 °C with phase pure spinel using solution combustion technique. The phase purity and effect of doping on NCYFO complex oxide on structural, thermal, magnetic and dielectric properties have been determined by various characterization techniques. The FTIR data reveal that strong metal oxide linkages can be observed in the tetrahedral and octahedral sites at wavenumbers 460 to 410 cm<sup>−1</sup> and 595 to 540 cm<sup>−1</sup>. The X-ray diffraction (XRD) studies confirmed the spinel structure. The crystallite sizes and lattice parameters were estimated to be in the range of 31 to 22 nm and 8.32 to 8.35 Å, respectively. The X-ray photoelectron spectroscopy (XPS) study confirmed that the increase in Yb concentration results in accumulation of Yb in the grain boundaries of NCYFO in the form of Yb<sub>2</sub>O<sub>3</sub>. The thermal stability of nanoparticles were investigated using TGA/DSC method. Transmission Electron microscopy (TEM) studies and Field emission scanning electron microscopy (FESEM) used to study the particle size distribution and elemental composition within the nanomaterial. In addition, the dielectric properties, such as, dielectric constant and dielectric loss were investigated for all the NCYFO nanomaterial. The saturation magnetization of the NCYFO is determined using vibrating sample magnetometer (VSM) analysis and is maximum for <i>x</i> = 0.03 (<i>Ms</i> = 97.56 emu/g) sample. The high magnetic behaviour and better dielectric properties of the NCYFO nanomaterials are suitable for electro-magnetic applications.</p></div>","PeriodicalId":646,"journal":{"name":"Journal of Materials Science: Materials in Electronics","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science: Materials in Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10854-024-13389-4","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Herein, we report the synthesis of ytterbium (Yb) (with concentration x = 0.01, 0.015, 0.02, 0.025 and 0.03) doped in to nickel cobalt ferrite (NCYFO: YbxNi0.5Co0.5Fe2-xO4) nanoparticles at temperature 500 °C with phase pure spinel using solution combustion technique. The phase purity and effect of doping on NCYFO complex oxide on structural, thermal, magnetic and dielectric properties have been determined by various characterization techniques. The FTIR data reveal that strong metal oxide linkages can be observed in the tetrahedral and octahedral sites at wavenumbers 460 to 410 cm−1 and 595 to 540 cm−1. The X-ray diffraction (XRD) studies confirmed the spinel structure. The crystallite sizes and lattice parameters were estimated to be in the range of 31 to 22 nm and 8.32 to 8.35 Å, respectively. The X-ray photoelectron spectroscopy (XPS) study confirmed that the increase in Yb concentration results in accumulation of Yb in the grain boundaries of NCYFO in the form of Yb2O3. The thermal stability of nanoparticles were investigated using TGA/DSC method. Transmission Electron microscopy (TEM) studies and Field emission scanning electron microscopy (FESEM) used to study the particle size distribution and elemental composition within the nanomaterial. In addition, the dielectric properties, such as, dielectric constant and dielectric loss were investigated for all the NCYFO nanomaterial. The saturation magnetization of the NCYFO is determined using vibrating sample magnetometer (VSM) analysis and is maximum for x = 0.03 (Ms = 97.56 emu/g) sample. The high magnetic behaviour and better dielectric properties of the NCYFO nanomaterials are suitable for electro-magnetic applications.

Abstract Image

Abstract Image

用于电磁应用的 Yb+3 掺杂镍钴铁氧体纳米材料的结构、热、磁和介电特性研究
在此,我们报告了利用溶液燃烧技术在 500 °C 温度下合成掺杂镱(Yb)(浓度 x = 0.01、0.015、0.02、0.025 和 0.03)的镍钴铁氧体(NCYFO:YbxNi0.5Co0.5Fe2-xO4)纳米粒子与相纯尖晶石的过程。通过各种表征技术,确定了 NCYFO 复氧化物的相纯度以及掺杂对其结构、热、磁和介电特性的影响。傅立叶变换红外光谱数据显示,在波长为 460 至 410 cm-1 和 595 至 540 cm-1 的四面体和八面体位点上可以观察到强金属氧化物连接。X 射线衍射(XRD)研究证实了尖晶石结构。据估计,其晶粒大小和晶格参数范围分别为 31 至 22 纳米和 8.32 至 8.35 Å。X 射线光电子能谱(XPS)研究证实,镱浓度的增加导致镱以 Yb2O3 的形式在 NCYFO 的晶界中积累。使用 TGA/DSC 方法研究了纳米颗粒的热稳定性。透射电子显微镜(TEM)研究和场发射扫描电子显微镜(FESEM)用于研究纳米材料的粒度分布和元素组成。此外,还研究了所有 NCYFO 纳米材料的介电性能,如介电常数和介电损耗。利用振动样品磁力计(VSM)分析确定了 NCYFO 的饱和磁化率,x = 0.03(Ms = 97.56 emu/g)样品的饱和磁化率最大。NCYFO 纳米材料具有高磁性和更好的介电性能,适用于电磁应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Science: Materials in Electronics
Journal of Materials Science: Materials in Electronics 工程技术-材料科学:综合
CiteScore
5.00
自引率
7.10%
发文量
1931
审稿时长
2 months
期刊介绍: The Journal of Materials Science: Materials in Electronics is an established refereed companion to the Journal of Materials Science. It publishes papers on materials and their applications in modern electronics, covering the ground between fundamental science, such as semiconductor physics, and work concerned specifically with applications. It explores the growth and preparation of new materials, as well as their processing, fabrication, bonding and encapsulation, together with the reliability, failure analysis, quality assurance and characterization related to the whole range of applications in electronics. The Journal presents papers in newly developing fields such as low dimensional structures and devices, optoelectronics including III-V compounds, glasses and linear/non-linear crystal materials and lasers, high Tc superconductors, conducting polymers, thick film materials and new contact technologies, as well as the established electronics device and circuit materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信