Influence of oxidation way on microstructure and oxides distribution of Ag–SnO2Sb2O3 materials

IF 2.8 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Chunping Wu, Lejian Yu, Chengwei Zhao, Qiong Wu, Runzhang Huang, Meng Yuan, Guofu Xu
{"title":"Influence of oxidation way on microstructure and oxides distribution of Ag–SnO2Sb2O3 materials","authors":"Chunping Wu,&nbsp;Lejian Yu,&nbsp;Chengwei Zhao,&nbsp;Qiong Wu,&nbsp;Runzhang Huang,&nbsp;Meng Yuan,&nbsp;Guofu Xu","doi":"10.1007/s10854-024-13451-1","DOIUrl":null,"url":null,"abstract":"<div><p>Ag–SnO<sub>2</sub>Sb<sub>2</sub>O<sub>3</sub> materials prepared by internal oxidation technology have excellent electrical properties. Here Ag–SnO<sub>2</sub>Sb<sub>2</sub>O<sub>3</sub> materials are fabricated by four kinds of different oxidation ways. Influence of oxidation way on microstructure and oxides distribution is investigated and the formation mechanism of Ag–SnO<sub>2</sub>Sb<sub>2</sub>O<sub>3</sub> materials is discussed. The oxidation effect of billet oxidation in air + Ag<sub>2</sub>O is the best and the oxides distribution is the most uniform and the physical properties (relative density: 97.2%, hardness: 57 Hv03 and electrical conductivity: 12.3 Ms/m) are also the best in the four kinds of oxidation ways.</p></div>","PeriodicalId":646,"journal":{"name":"Journal of Materials Science: Materials in Electronics","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science: Materials in Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10854-024-13451-1","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Ag–SnO2Sb2O3 materials prepared by internal oxidation technology have excellent electrical properties. Here Ag–SnO2Sb2O3 materials are fabricated by four kinds of different oxidation ways. Influence of oxidation way on microstructure and oxides distribution is investigated and the formation mechanism of Ag–SnO2Sb2O3 materials is discussed. The oxidation effect of billet oxidation in air + Ag2O is the best and the oxides distribution is the most uniform and the physical properties (relative density: 97.2%, hardness: 57 Hv03 and electrical conductivity: 12.3 Ms/m) are also the best in the four kinds of oxidation ways.

Abstract Image

氧化方式对 Ag-SnO2Sb2O3 材料微观结构和氧化物分布的影响
利用内氧化技术制备的 Ag-SnO2Sb2O3 材料具有优异的电气性能。本文通过四种不同的氧化方式制备了 Ag-SnO2Sb2O3 材料。研究了氧化方式对微观结构和氧化物分布的影响,并探讨了 Ag-SnO2Sb2O3 材料的形成机理。在四种氧化方式中,坯料在空气+Ag2O中的氧化效果最好,氧化物分布最均匀,物理性能(相对密度:97.2%,硬度:57 Hv03,导电率:12.3 Ms/m)也最好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Science: Materials in Electronics
Journal of Materials Science: Materials in Electronics 工程技术-材料科学:综合
CiteScore
5.00
自引率
7.10%
发文量
1931
审稿时长
2 months
期刊介绍: The Journal of Materials Science: Materials in Electronics is an established refereed companion to the Journal of Materials Science. It publishes papers on materials and their applications in modern electronics, covering the ground between fundamental science, such as semiconductor physics, and work concerned specifically with applications. It explores the growth and preparation of new materials, as well as their processing, fabrication, bonding and encapsulation, together with the reliability, failure analysis, quality assurance and characterization related to the whole range of applications in electronics. The Journal presents papers in newly developing fields such as low dimensional structures and devices, optoelectronics including III-V compounds, glasses and linear/non-linear crystal materials and lasers, high Tc superconductors, conducting polymers, thick film materials and new contact technologies, as well as the established electronics device and circuit materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信