{"title":"Effects of date seed and graphite fillers on the mechanical and thermal properties of vinyl ester matrix composites","authors":"Veeramalai Chinnasamy Sathish Gandhi, Durairaj Manikandan, Radhakrishnan Kumaravelan, Nagaraj Nagaprasad","doi":"10.1007/s13726-024-01383-w","DOIUrl":null,"url":null,"abstract":"<p>Currently, fiber-reinforced polymer composites possess multiple benefits compared to metals and alloys in diverse applications. Researchers have conducted numerous studies aimed at improving the inherent mechanical and thermal properties of composite materials. These studies primarily emphasize the utilization of biodegradable, recyclable, and sustainable materials. This research paper aims to analyze the use of solid biomass waste, particularly hybrid date seed filler (DSF) and graphite (GH) powder, as reinforcements in vinyl ester (VE) composites. The hand layup method was used for manufacturing composites, incorporating DSF components with weight percentages varying from 0 to 15% and graphite ranging from 0 to 9% (by wt). The study aimed to investigate how the introduction of hybrid filler affects both the mechanical characteristics and thermal resistance of the composites. A set of experiments was carried out to assess the mechanical properties of composites created by combining graphite powder with DSF. Tensile strength, flexural strength, impact resistance, and hardness are among the qualities. The optimal mechanical properties of the GH–DSF–VE composite were achieved with a date seed infill of 10% (by wt) and graphite of 9% (by wt). The ultimate tensile strength of the material measured approximately 43.2 MPa. The composite materials that were developed demonstrated an ultimate flexural strength of around 136 MPa. The thermogravimetric analysis indicated that GH–DSF–VE composites have a high thermal resistance of up to 350 °C. The analysis of the fractured surface and surface properties of GH–DSF–VE composites was performed using scanning electron microscopy.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>","PeriodicalId":601,"journal":{"name":"Iranian Polymer Journal","volume":"63 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Polymer Journal","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s13726-024-01383-w","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Currently, fiber-reinforced polymer composites possess multiple benefits compared to metals and alloys in diverse applications. Researchers have conducted numerous studies aimed at improving the inherent mechanical and thermal properties of composite materials. These studies primarily emphasize the utilization of biodegradable, recyclable, and sustainable materials. This research paper aims to analyze the use of solid biomass waste, particularly hybrid date seed filler (DSF) and graphite (GH) powder, as reinforcements in vinyl ester (VE) composites. The hand layup method was used for manufacturing composites, incorporating DSF components with weight percentages varying from 0 to 15% and graphite ranging from 0 to 9% (by wt). The study aimed to investigate how the introduction of hybrid filler affects both the mechanical characteristics and thermal resistance of the composites. A set of experiments was carried out to assess the mechanical properties of composites created by combining graphite powder with DSF. Tensile strength, flexural strength, impact resistance, and hardness are among the qualities. The optimal mechanical properties of the GH–DSF–VE composite were achieved with a date seed infill of 10% (by wt) and graphite of 9% (by wt). The ultimate tensile strength of the material measured approximately 43.2 MPa. The composite materials that were developed demonstrated an ultimate flexural strength of around 136 MPa. The thermogravimetric analysis indicated that GH–DSF–VE composites have a high thermal resistance of up to 350 °C. The analysis of the fractured surface and surface properties of GH–DSF–VE composites was performed using scanning electron microscopy.
期刊介绍:
Iranian Polymer Journal, a monthly peer-reviewed international journal, provides a continuous forum for the dissemination of the original research and latest advances made in science and technology of polymers, covering diverse areas of polymer synthesis, characterization, polymer physics, rubber, plastics and composites, processing and engineering, biopolymers, drug delivery systems and natural polymers to meet specific applications. Also contributions from nano-related fields are regarded especially important for its versatility in modern scientific development.