On Stochastic Pure-Cubic Optical Soliton Solutions of Nonlinear Schrödinger Equation Having Power Law of Self-Phase Modulation

IF 1.3 4区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY
Aydin Secer, Ismail Onder, Handenur Esen, Neslihan Ozdemir, Melih Cinar, Hasan Cakicioglu, Selvi Durmus, Muslum Ozisik, Mustafa Bayram
{"title":"On Stochastic Pure-Cubic Optical Soliton Solutions of Nonlinear Schrödinger Equation Having Power Law of Self-Phase Modulation","authors":"Aydin Secer, Ismail Onder, Handenur Esen, Neslihan Ozdemir, Melih Cinar, Hasan Cakicioglu, Selvi Durmus, Muslum Ozisik, Mustafa Bayram","doi":"10.1007/s10773-024-05756-y","DOIUrl":null,"url":null,"abstract":"<p>In this study, we focus on the stochastic pure-cubic optical solitons of the nonlinear Schrödinger equation, characterized by a parabolic law of nonlinearity. The nonlinear Schrödinger equation models are crucial for simulating pulse propagation in optical fibers especially ultrashort pulses. To obtain optical soliton solutions, we employ the effective and well-known the new Kudryashov and the generalized Kudryashov methods. Through these methods, we successfully derive dark, bright, and singular optical soliton solutions. Our findings are illustrated with 2D and 3D graphics for clarity. A significant aspect of our study is the inclusion of stochasticity in the model. We specifically examine the impact of white noise on the solutions. This effect is detailed in the results section, with corresponding graphs. Throughout our research, we did not encounter any restrictive factors that hindered access to the results. Ultimately, considering the growing number of studies on optical fibers, our work stands out by being the first to obtain optical solutions for this specific model and by investigating the influence of stochastic theories on wave behavior.</p>","PeriodicalId":597,"journal":{"name":"International Journal of Theoretical Physics","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Theoretical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s10773-024-05756-y","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we focus on the stochastic pure-cubic optical solitons of the nonlinear Schrödinger equation, characterized by a parabolic law of nonlinearity. The nonlinear Schrödinger equation models are crucial for simulating pulse propagation in optical fibers especially ultrashort pulses. To obtain optical soliton solutions, we employ the effective and well-known the new Kudryashov and the generalized Kudryashov methods. Through these methods, we successfully derive dark, bright, and singular optical soliton solutions. Our findings are illustrated with 2D and 3D graphics for clarity. A significant aspect of our study is the inclusion of stochasticity in the model. We specifically examine the impact of white noise on the solutions. This effect is detailed in the results section, with corresponding graphs. Throughout our research, we did not encounter any restrictive factors that hindered access to the results. Ultimately, considering the growing number of studies on optical fibers, our work stands out by being the first to obtain optical solutions for this specific model and by investigating the influence of stochastic theories on wave behavior.

Abstract Image

论具有自相调制幂律的非线性薛定谔方程的随机纯立方体光学孤子解
在本研究中,我们重点研究非线性薛定谔方程的随机纯立方光孤子,其特点是非线性抛物线规律。非线性薛定谔方程模型对于模拟光纤中的脉冲传播,尤其是超短脉冲传播至关重要。为了获得光学孤子解,我们采用了有效的、众所周知的新库德里亚绍夫方法和广义库德里亚绍夫方法。通过这些方法,我们成功地推导出了暗光、亮光和奇异光孤子解。我们用二维和三维图形对研究结果进行了清晰的说明。我们研究的一个重要方面是在模型中加入了随机性。我们特别研究了白噪声对解法的影响。结果部分详细介绍了这种影响,并配有相应的图表。在整个研究过程中,我们没有遇到任何妨碍获取结果的限制性因素。最后,考虑到有关光纤的研究越来越多,我们的研究工作通过首次获得这一特定模型的光学解以及研究随机理论对波行为的影响而脱颖而出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
21.40%
发文量
258
审稿时长
3.3 months
期刊介绍: International Journal of Theoretical Physics publishes original research and reviews in theoretical physics and neighboring fields. Dedicated to the unification of the latest physics research, this journal seeks to map the direction of future research by original work in traditional physics like general relativity, quantum theory with relativistic quantum field theory,as used in particle physics, and by fresh inquiry into quantum measurement theory, and other similarly fundamental areas, e.g. quantum geometry and quantum logic, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信