Xinxin Li, Zhen Deng, Yang Jiang, Chunhua Du, Haiqiang Jia, Wenxin Wang, Hong Chen
{"title":"Quantum confinement of carriers in the type-I quantum wells structure","authors":"Xinxin Li, Zhen Deng, Yang Jiang, Chunhua Du, Haiqiang Jia, Wenxin Wang, Hong Chen","doi":"10.1088/1674-1056/ad5d99","DOIUrl":null,"url":null,"abstract":"Quantum confinement is recognized to be an inherent property in low-dimensional structures. Traditionally, it is believed that the carriers trapped within the well cannot escape due to the discrete energy levels. However, our previous research has revealed efficient carrier escape in low-dimensional structures, contradicting this conventional understanding. In this study, we review the energy band structure of quantum wells along the growth direction considering it as a superposition of the bulk material dispersion and quantization energy dispersion resulting from the quantum confinement across the whole Brillouin zone. By accounting for all wave vectors, we obtain a certain distribution of carrier energy at each quantized energy level, giving rise to the energy subbands. These results enable carriers to escape from the well under the influence of an electric field. Additionally, we have compiled a comprehensive summary of various energy band scenarios in quantum well structures relevant to carrier transport. Such a new interpretation holds significant value in deepening our comprehension of low-dimensional energy bands, discovering new physical phenomena, and designing novel devices with superior performance.","PeriodicalId":10253,"journal":{"name":"Chinese Physics B","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Physics B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1674-1056/ad5d99","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Quantum confinement is recognized to be an inherent property in low-dimensional structures. Traditionally, it is believed that the carriers trapped within the well cannot escape due to the discrete energy levels. However, our previous research has revealed efficient carrier escape in low-dimensional structures, contradicting this conventional understanding. In this study, we review the energy band structure of quantum wells along the growth direction considering it as a superposition of the bulk material dispersion and quantization energy dispersion resulting from the quantum confinement across the whole Brillouin zone. By accounting for all wave vectors, we obtain a certain distribution of carrier energy at each quantized energy level, giving rise to the energy subbands. These results enable carriers to escape from the well under the influence of an electric field. Additionally, we have compiled a comprehensive summary of various energy band scenarios in quantum well structures relevant to carrier transport. Such a new interpretation holds significant value in deepening our comprehension of low-dimensional energy bands, discovering new physical phenomena, and designing novel devices with superior performance.
期刊介绍:
Chinese Physics B is an international journal covering the latest developments and achievements in all branches of physics worldwide (with the exception of nuclear physics and physics of elementary particles and fields, which is covered by Chinese Physics C). It publishes original research papers and rapid communications reflecting creative and innovative achievements across the field of physics, as well as review articles covering important accomplishments in the frontiers of physics.
Subject coverage includes:
Condensed matter physics and the physics of materials
Atomic, molecular and optical physics
Statistical, nonlinear and soft matter physics
Plasma physics
Interdisciplinary physics.