In-depth insights into critical role of aromatic C(sp2)–H on Li+ storage

IF 9.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Ling Qin, Ye Zhou
{"title":"In-depth insights into critical role of aromatic C(sp2)–H on Li+ storage","authors":"Ling Qin, Ye Zhou","doi":"10.1007/s12598-024-02946-9","DOIUrl":null,"url":null,"abstract":"<p>The development of high-sloping-capacity carbons enables the creation of high-power lithium-ion batteries and capacitors (LIBs/LICs). Among the various heteroatom-doped carbon materials, hydrogen-rich carbon appears to be a promising candidate due to its facile synthesis and high capacity for Li<sup>+</sup> storage. Nevertheless, conclusive data are still lacking to elucidate the fundamental function of the hydrogen-terminated groups (C–H configuration) in Li<sup>+</sup> storage. Prof. Lian and his co-workers have utilized an ion-catalyzed self-template method to synthesize the hydrogen-rich carbon nanoribbon (HCNR) with high specific and rate capacity. The HCNR’s Li<sup>+</sup> storage mechanism is clarified by the use of in situ spectroscopy methods, which reveals that the sp<sup>2</sup>-hybridization of the protonated carbon atoms undergoes a highly reversible transition to sp<sup>3</sup>-hybridization for efficient Li<sup>+</sup> ions uptake (<span>\\({\\text{C}}\\left( {{\\text{sp}}^{2} } \\right){-}{\\text{H}} + {\\text{Li}}^{ + } + {\\text{e}}^{ - } \\leftrightarrow {\\text{C}}\\left( {{\\text{sp}}^{3} } \\right) &lt;_{{{\\text{Li}}}}^{{\\text{H}}}\\)</span>), contributing to the dominant high sloping capacity. This sloping characteristic points to a highly capacitance-dominated storage process with fast kinetics, enabling better rate performance. This discovery provides mechanistic insights into the critical function of aromatic C(sp<sup>2</sup>)–H in enhancing Li<sup>+</sup> storage and creates new opportunities for the development of such sloping-type carbons for high-performance rechargeable batteries and capacitors.</p>","PeriodicalId":749,"journal":{"name":"Rare Metals","volume":"2020 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rare Metals","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s12598-024-02946-9","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The development of high-sloping-capacity carbons enables the creation of high-power lithium-ion batteries and capacitors (LIBs/LICs). Among the various heteroatom-doped carbon materials, hydrogen-rich carbon appears to be a promising candidate due to its facile synthesis and high capacity for Li+ storage. Nevertheless, conclusive data are still lacking to elucidate the fundamental function of the hydrogen-terminated groups (C–H configuration) in Li+ storage. Prof. Lian and his co-workers have utilized an ion-catalyzed self-template method to synthesize the hydrogen-rich carbon nanoribbon (HCNR) with high specific and rate capacity. The HCNR’s Li+ storage mechanism is clarified by the use of in situ spectroscopy methods, which reveals that the sp2-hybridization of the protonated carbon atoms undergoes a highly reversible transition to sp3-hybridization for efficient Li+ ions uptake (\({\text{C}}\left( {{\text{sp}}^{2} } \right){-}{\text{H}} + {\text{Li}}^{ + } + {\text{e}}^{ - } \leftrightarrow {\text{C}}\left( {{\text{sp}}^{3} } \right) <_{{{\text{Li}}}}^{{\text{H}}}\)), contributing to the dominant high sloping capacity. This sloping characteristic points to a highly capacitance-dominated storage process with fast kinetics, enabling better rate performance. This discovery provides mechanistic insights into the critical function of aromatic C(sp2)–H in enhancing Li+ storage and creates new opportunities for the development of such sloping-type carbons for high-performance rechargeable batteries and capacitors.

Abstract Image

深入了解芳香族 C(sp2)-H 对 Li+ 储存的关键作用
开发高倾斜容量碳材料有助于制造大功率锂离子电池和电容器(LIBs/LICs)。在各种掺杂杂原子的碳材料中,富氢碳因其易于合成和高锂离子存储容量而似乎是一种很有前途的候选材料。然而,目前仍缺乏确凿的数据来阐明氢端基团(C-H 构型)在 Li+ 储存中的基本功能。廉教授和他的合作者利用离子催化自模板法合成了富氢碳纳米带(HCNR),它具有很高的比容量和速率容量。原位光谱法阐明了 HCNR 的 Li+ 储存机制,揭示了质子化碳原子的 sp2 杂化经历了向 sp3 杂化的高度可逆转变,从而实现了对 Li+ 离子的高效吸收(({\text{C}}\left( {\text{sp}}^{2} } \right){-}{\text{H}}+ {\text{Li}}^{ + }+ {{text{e}}^{ - }\Leftrightarrow {\text{C}}\left( {{\text{sp}}^{3} } \right) <_{{text/{Li}}}}^{{text{H}}}\)),促成了主要的高倾斜能力。这种倾斜特性表明,电容主导的存储过程具有快速动力学,从而实现了更好的速率性能。这一发现从机理上揭示了芳香族 C(sp2)-H 在增强 Li+ 储存中的关键功能,并为开发用于高性能充电电池和电容器的斜坡型碳创造了新的机遇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Rare Metals
Rare Metals 工程技术-材料科学:综合
CiteScore
12.10
自引率
12.50%
发文量
2919
审稿时长
2.7 months
期刊介绍: Rare Metals is a monthly peer-reviewed journal published by the Nonferrous Metals Society of China. It serves as a platform for engineers and scientists to communicate and disseminate original research articles in the field of rare metals. The journal focuses on a wide range of topics including metallurgy, processing, and determination of rare metals. Additionally, it showcases the application of rare metals in advanced materials such as superconductors, semiconductors, composites, and ceramics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信