Novel gradient ZrB2–MoSi2–SiC dense layer with enhanced emissivity and long-term oxidation resistance at ultra-high temperatures

IF 9.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Ling-Yu Yang, Shun Dong, Tang-Yin Cui, Jian-Qiang Xin, Gui-Qing Chen, Chang-Qing Hong, Xing-Hong Zhang
{"title":"Novel gradient ZrB2–MoSi2–SiC dense layer with enhanced emissivity and long-term oxidation resistance at ultra-high temperatures","authors":"Ling-Yu Yang, Shun Dong, Tang-Yin Cui, Jian-Qiang Xin, Gui-Qing Chen, Chang-Qing Hong, Xing-Hong Zhang","doi":"10.1007/s12598-024-02959-4","DOIUrl":null,"url":null,"abstract":"<p>The rapid evolution of hypersonic vehicle technologies necessitates robust thermal protection systems capable of withstanding extreme oxidative ablation. This study introduces a novel gradient-architected ZrB<sub>2</sub>–MoSi<sub>2</sub>–SiC dense layer embedded within a lightweight three-dimensional (3D) needled carbon fiber composite. Utilizing the volatility of ethanol and polycarbosilane, the ceramic slurry is selectively infused into targeted regions of the fibrous structure, optimizing the ZrB<sub>2</sub> to MoSi<sub>2</sub> ratio to enhance performance. The resulting dense layer exhibits exceptional emissivity, surpassing 0.90 in the 1–3 μm range and exceeding 0.87 in the 2–14 μm range. Moreover, it demonstrates remarkable oxidative ablation resistance. Specifically, at an optimized ZrB<sub>2</sub> to MoSi<sub>2</sub> ratio of 6:4, the dense layer achieves a minimal linear ablation rate of 0.015 μm·s<sup>−1</sup> under a 1.5 MW·m<sup>−2</sup> oxyacetylene flame for 1000 s. Even after exposure to oxyacetylene ablation at surface temperatures of approximately 1750 °C for 1000 s, the dense layer retains its structural integrity, highlighting its enduring oxidation resistance. The incorporation of MoSi<sub>2</sub> not only enhances emissivity but also fortifies the ZrO<sub>2</sub> and SiO<sub>2</sub> oxide layers, crucial for environments with elevated oxygen levels, thereby mitigating the active oxidation of SiC. This combination of high emissivity and long-term oxidation resistance at ultra-high temperatures positions the ZrB<sub>2</sub>–MoSi<sub>2</sub>–SiC dense layer as an exceptionally promising candidate for advanced thermal protection in hypersonic vehicles.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>","PeriodicalId":749,"journal":{"name":"Rare Metals","volume":"58 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rare Metals","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s12598-024-02959-4","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid evolution of hypersonic vehicle technologies necessitates robust thermal protection systems capable of withstanding extreme oxidative ablation. This study introduces a novel gradient-architected ZrB2–MoSi2–SiC dense layer embedded within a lightweight three-dimensional (3D) needled carbon fiber composite. Utilizing the volatility of ethanol and polycarbosilane, the ceramic slurry is selectively infused into targeted regions of the fibrous structure, optimizing the ZrB2 to MoSi2 ratio to enhance performance. The resulting dense layer exhibits exceptional emissivity, surpassing 0.90 in the 1–3 μm range and exceeding 0.87 in the 2–14 μm range. Moreover, it demonstrates remarkable oxidative ablation resistance. Specifically, at an optimized ZrB2 to MoSi2 ratio of 6:4, the dense layer achieves a minimal linear ablation rate of 0.015 μm·s−1 under a 1.5 MW·m−2 oxyacetylene flame for 1000 s. Even after exposure to oxyacetylene ablation at surface temperatures of approximately 1750 °C for 1000 s, the dense layer retains its structural integrity, highlighting its enduring oxidation resistance. The incorporation of MoSi2 not only enhances emissivity but also fortifies the ZrO2 and SiO2 oxide layers, crucial for environments with elevated oxygen levels, thereby mitigating the active oxidation of SiC. This combination of high emissivity and long-term oxidation resistance at ultra-high temperatures positions the ZrB2–MoSi2–SiC dense layer as an exceptionally promising candidate for advanced thermal protection in hypersonic vehicles.

Graphical abstract

Abstract Image

新型梯度 ZrB2-MoSi2-SiC 致密层在超高温条件下具有更高的发射率和长期抗氧化性
高超音速飞行器技术的快速发展需要能够承受极端氧化烧蚀的坚固热保护系统。本研究介绍了一种新型梯度结构 ZrB2-MoSi2-SiC 致密层,该层嵌入轻质三维(3D)针刺碳纤维复合材料中。利用乙醇和聚碳硅烷的挥发性,陶瓷浆料被选择性地注入纤维结构的目标区域,优化了 ZrB2 与 MoSi2 的比例,从而提高了性能。由此产生的致密层具有优异的发射率,在 1-3 μm 范围内超过 0.90,在 2-14 μm 范围内超过 0.87。此外,它还具有出色的抗氧化烧蚀性能。具体来说,当 ZrB2 与 MoSi2 的优化比例为 6:4 时,致密层在 1.5 MW-m-2 氧乙炔火焰下 1000 秒的最小线性烧蚀率为 0.015 μm-s-1。MoSi2 的加入不仅提高了发射率,还强化了 ZrO2 和 SiO2 氧化层,这对于氧气含量较高的环境至关重要,从而减轻了碳化硅的活性氧化。在超高温条件下,ZrB2-MoSi2-SiC致密层兼具高发射率和长期抗氧化性,是高超音速飞行器先进热保护的理想候选材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Rare Metals
Rare Metals 工程技术-材料科学:综合
CiteScore
12.10
自引率
12.50%
发文量
2919
审稿时长
2.7 months
期刊介绍: Rare Metals is a monthly peer-reviewed journal published by the Nonferrous Metals Society of China. It serves as a platform for engineers and scientists to communicate and disseminate original research articles in the field of rare metals. The journal focuses on a wide range of topics including metallurgy, processing, and determination of rare metals. Additionally, it showcases the application of rare metals in advanced materials such as superconductors, semiconductors, composites, and ceramics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信