Shu Wan
(, ), Haizhou Huang
(, ), Zisheng He
(, ), Yizhou Ye
(, ), Shen Li
(, ), Shi Su
(, ), Jiaxin Shen
(, ), Longxiang Han
(, ), Peng Wan
(, ), Xu Ran
(, ), Li Chen
(, ), Xuefeng He
(, ), Litao Sun
(, ), Hengchang Bi
(, )
{"title":"A highly linear stretchable MXene-based biocompatible hydrogel–elastomer hybrid with tissue-level softness","authors":"Shu Wan \n (, ), Haizhou Huang \n (, ), Zisheng He \n (, ), Yizhou Ye \n (, ), Shen Li \n (, ), Shi Su \n (, ), Jiaxin Shen \n (, ), Longxiang Han \n (, ), Peng Wan \n (, ), Xu Ran \n (, ), Li Chen \n (, ), Xuefeng He \n (, ), Litao Sun \n (, ), Hengchang Bi \n (, )","doi":"10.1007/s40843-024-2985-8","DOIUrl":null,"url":null,"abstract":"<div><p>Maintaining low modulus while endowing the wide-range linear stretchability to wearable or implantable devices is crucial for these devices to reduce the mechanical mismatch between the devices and human skin/tissue interfaces. However, improving linear stretchability often results in an increased modulus of stretchable electronic materials, which hinders their conformability in long-term quantifiable monitoring of organs. Herein, we develop a hybrid structure involving interlocking low-modulus porous elastomers (Ecoflex-0030) and MXene-based hydrogels with crosslinking networks of polyvinyl alcohol, sodium alginate, and MXene. This hydrogel–elastomer structure exhibits superior performance compared with previous reports, with a wide linear stretchability strain range from 0 to 1000% and maintaining a low modulus of 6.4 kPa. Moreover, the hydrogel–elastomer hybrids can be utilized as highly sensitive strain sensors with remarkable characteristics, including high sensitivity (gauge factor ∼3.52), a linear correlation between the resistance and strain (0–200%), rapid response (0.18 s) and recovery times (0.21 s), and excellent electrical reproducibility (1000 loading–unloading cycles). Those electrical and mechanical properties allow the sensor to act as a suitable quantifiable equipment in organ monitoring, human activities detecting, and human–machine interactions.</p></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"67 10","pages":"3368 - 3378"},"PeriodicalIF":6.8000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40843-024-2985-8","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Maintaining low modulus while endowing the wide-range linear stretchability to wearable or implantable devices is crucial for these devices to reduce the mechanical mismatch between the devices and human skin/tissue interfaces. However, improving linear stretchability often results in an increased modulus of stretchable electronic materials, which hinders their conformability in long-term quantifiable monitoring of organs. Herein, we develop a hybrid structure involving interlocking low-modulus porous elastomers (Ecoflex-0030) and MXene-based hydrogels with crosslinking networks of polyvinyl alcohol, sodium alginate, and MXene. This hydrogel–elastomer structure exhibits superior performance compared with previous reports, with a wide linear stretchability strain range from 0 to 1000% and maintaining a low modulus of 6.4 kPa. Moreover, the hydrogel–elastomer hybrids can be utilized as highly sensitive strain sensors with remarkable characteristics, including high sensitivity (gauge factor ∼3.52), a linear correlation between the resistance and strain (0–200%), rapid response (0.18 s) and recovery times (0.21 s), and excellent electrical reproducibility (1000 loading–unloading cycles). Those electrical and mechanical properties allow the sensor to act as a suitable quantifiable equipment in organ monitoring, human activities detecting, and human–machine interactions.
期刊介绍:
Science China Materials (SCM) is a globally peer-reviewed journal that covers all facets of materials science. It is supervised by the Chinese Academy of Sciences and co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China. The journal is jointly published monthly in both printed and electronic forms by Science China Press and Springer. The aim of SCM is to encourage communication of high-quality, innovative research results at the cutting-edge interface of materials science with chemistry, physics, biology, and engineering. It focuses on breakthroughs from around the world and aims to become a world-leading academic journal for materials science.