Crystal structure graph neural networks for high-performance superconducting critical temperature prediction

IF 6.8 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jingzi Zhang  (, ), Chengquan Zhong  (, ), Xiaoting Lu  (, ), Jiakai Liu  (, ), Kailong Hu  (, ), Xi Lin  (, )
{"title":"Crystal structure graph neural networks for high-performance superconducting critical temperature prediction","authors":"Jingzi Zhang \n (,&nbsp;),&nbsp;Chengquan Zhong \n (,&nbsp;),&nbsp;Xiaoting Lu \n (,&nbsp;),&nbsp;Jiakai Liu \n (,&nbsp;),&nbsp;Kailong Hu \n (,&nbsp;),&nbsp;Xi Lin \n (,&nbsp;)","doi":"10.1007/s40843-024-3026-8","DOIUrl":null,"url":null,"abstract":"<div><p>The utilization of machine learning methods to predict the superconducting critical temperature (<i>T</i><sub>c</sub>) traditionally necessitates manually constructing elemental features, which challenges both the provision of meaningful chemical insights and the accuracy of predictions. In this work, we introduced crystal structure graph neural networks to extract structure-based features for <i>T</i><sub>c</sub> prediction. Our results indicated that these structure-based models outperformed all previously reported models, achieving an impressive coefficient of determination (<i>R</i><sup>2</sup>) of 0.962 and a root mean square error (RMSE) of 6.192 K. From the existing Inorganic Crystal Structure Database (ICSD), our model successfully identified 76 potential high-temperature superconducting compounds with <i>T</i><sub>c</sub> ⩾ 77 K. Among these, Tl<sub>5</sub>Ba<sub>6</sub>Ca<sub>6</sub>Cu<sub>9</sub>O<sub>29</sub> and TlYBa<sub>2</sub>Cu<sub>2</sub>O<sub>7</sub> exhibit remarkably high <i>T</i><sub>c</sub> values of 108.4 and 101.8 K, respectively. This work provides a perspective on the structure-property relationship for reliable <i>T</i><sub>c</sub> prediction.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"67 10","pages":"3253 - 3261"},"PeriodicalIF":6.8000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40843-024-3026-8","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The utilization of machine learning methods to predict the superconducting critical temperature (Tc) traditionally necessitates manually constructing elemental features, which challenges both the provision of meaningful chemical insights and the accuracy of predictions. In this work, we introduced crystal structure graph neural networks to extract structure-based features for Tc prediction. Our results indicated that these structure-based models outperformed all previously reported models, achieving an impressive coefficient of determination (R2) of 0.962 and a root mean square error (RMSE) of 6.192 K. From the existing Inorganic Crystal Structure Database (ICSD), our model successfully identified 76 potential high-temperature superconducting compounds with Tc ⩾ 77 K. Among these, Tl5Ba6Ca6Cu9O29 and TlYBa2Cu2O7 exhibit remarkably high Tc values of 108.4 and 101.8 K, respectively. This work provides a perspective on the structure-property relationship for reliable Tc prediction.

Abstract Image

用于高性能超导临界温度预测的晶体结构图神经网络
利用机器学习方法预测超导临界温度(Tc)传统上需要手动构建元素特征,这对提供有意义的化学见解和预测的准确性都提出了挑战。在这项工作中,我们引入了晶体结构图神经网络,以提取基于结构的 Tc 预测特征。结果表明,这些基于结构的模型优于之前报道的所有模型,达到了令人印象深刻的 0.962 的决定系数(R2)和 6.192 K 的均方根误差(RMSE)。从现有的无机晶体结构数据库(ICSD)中,我们的模型成功鉴定出 76 种 Tc ⩾ 77 K 的潜在高温超导化合物,其中 Tl5Ba6Ca6Cu9O29 和 TlYBa2Cu2O7 的 Tc 值分别高达 108.4 K 和 101.8 K。这项工作为可靠预测 Tc 值提供了结构-性能关系的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science China Materials
Science China Materials Materials Science-General Materials Science
CiteScore
11.40
自引率
7.40%
发文量
949
期刊介绍: Science China Materials (SCM) is a globally peer-reviewed journal that covers all facets of materials science. It is supervised by the Chinese Academy of Sciences and co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China. The journal is jointly published monthly in both printed and electronic forms by Science China Press and Springer. The aim of SCM is to encourage communication of high-quality, innovative research results at the cutting-edge interface of materials science with chemistry, physics, biology, and engineering. It focuses on breakthroughs from around the world and aims to become a world-leading academic journal for materials science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信