8.2%-Efficiency hydrothermal Sb2S3 thin film solar cells by two-step RTP annealing strategy

IF 6.8 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Hui Deng  (, ), Xinxin Feng  (, ), Qiqiang Zhu  (, ), Yonghao Liu  (, ), Guidong Wang  (, ), Caixia Zhang  (, ), Qiao Zheng  (, ), Jionghua Wu  (, ), Weihuang Wang  (, ), Shuying Cheng  (, )
{"title":"8.2%-Efficiency hydrothermal Sb2S3 thin film solar cells by two-step RTP annealing strategy","authors":"Hui Deng \n (,&nbsp;),&nbsp;Xinxin Feng \n (,&nbsp;),&nbsp;Qiqiang Zhu \n (,&nbsp;),&nbsp;Yonghao Liu \n (,&nbsp;),&nbsp;Guidong Wang \n (,&nbsp;),&nbsp;Caixia Zhang \n (,&nbsp;),&nbsp;Qiao Zheng \n (,&nbsp;),&nbsp;Jionghua Wu \n (,&nbsp;),&nbsp;Weihuang Wang \n (,&nbsp;),&nbsp;Shuying Cheng \n (,&nbsp;)","doi":"10.1007/s40843-024-3055-x","DOIUrl":null,"url":null,"abstract":"<div><p>Antimony sulfide (Sb<sub>2</sub>S<sub>3</sub>) solar cells fabricated via hydrothermal deposition have attracted widespread attention. The annealing crystallization process plays a crucial role in achieving optimal crystallinity in hydrothermal Sb<sub>2</sub>S<sub>3</sub> thin films. Nevertheless, incomplete crystallization and the loss of sulfur at high-temperature contribute to defect recombination, constraining device performance. Herein, a two-step rapid thermal processing (RTP) annealing strategy is proposed to improve the crystal quality and efficiency of Sb<sub>2</sub>S<sub>3</sub> solar cells. The annealing process in Ar protection with atmospheric pressure can suppress S loss caused by saturated vapor pressure. The two-step RTP annealing with the 330°C low-temperature and 370°C high-temperature process ensures high crystallinity and vertical orientations of Sb<sub>2</sub>S<sub>3</sub> thin films, accompanied by a reduction in defect concentration from 1.01 × 10<sup>12</sup> to 5.97 × 10<sup>11</sup> cm<sup>−3</sup>. The Sb<sub>2</sub>S<sub>3</sub> solar cell achieves an efficiency of 8.20% with an enhanced open circuit voltage (<i>V</i><sub>OC</sub>) of 784 mV. The build-in voltage (<i>V</i><sub>bi</sub>) of 1.17 V and irradiation-dependent ideal factor (<i>n</i>) of 1.48 demonstrate enhanced heterojunction quality and suppressed defect recombination in the devices. The presented two-step annealing strategy and physical mechanism study will open new prospects for high-performance Sb<sub>2</sub>S<sub>3</sub> solar cells.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"67 11","pages":"3666 - 3674"},"PeriodicalIF":6.8000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40843-024-3055-x","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Antimony sulfide (Sb2S3) solar cells fabricated via hydrothermal deposition have attracted widespread attention. The annealing crystallization process plays a crucial role in achieving optimal crystallinity in hydrothermal Sb2S3 thin films. Nevertheless, incomplete crystallization and the loss of sulfur at high-temperature contribute to defect recombination, constraining device performance. Herein, a two-step rapid thermal processing (RTP) annealing strategy is proposed to improve the crystal quality and efficiency of Sb2S3 solar cells. The annealing process in Ar protection with atmospheric pressure can suppress S loss caused by saturated vapor pressure. The two-step RTP annealing with the 330°C low-temperature and 370°C high-temperature process ensures high crystallinity and vertical orientations of Sb2S3 thin films, accompanied by a reduction in defect concentration from 1.01 × 1012 to 5.97 × 1011 cm−3. The Sb2S3 solar cell achieves an efficiency of 8.20% with an enhanced open circuit voltage (VOC) of 784 mV. The build-in voltage (Vbi) of 1.17 V and irradiation-dependent ideal factor (n) of 1.48 demonstrate enhanced heterojunction quality and suppressed defect recombination in the devices. The presented two-step annealing strategy and physical mechanism study will open new prospects for high-performance Sb2S3 solar cells.

Abstract Image

通过两步 RTP 退火策略实现 8.2% 效率的水热法 Sb2S3 薄膜太阳能电池
通过水热沉积法制造的硫化锑(Sb2S3)太阳能电池引起了广泛关注。退火结晶过程对实现水热法 Sb2S3 薄膜的最佳结晶度起着至关重要的作用。然而,不完全结晶和高温下的硫损失会导致缺陷重组,从而限制器件的性能。本文提出了一种两步快速热处理(RTP)退火策略,以提高 Sb2S3 太阳能电池的晶体质量和效率。在大气压下的氩气保护下进行退火可抑制饱和蒸汽压造成的 S 损失。330°C 低温和 370°C 高温两步 RTP 退火工艺确保了 Sb2S3 薄膜的高结晶度和垂直取向性,同时缺陷浓度从 1.01 × 1012 cm-3 降至 5.97 × 1011 cm-3。Sb2S3 太阳能电池的效率达到 8.20%,开路电压(VOC)提高到 784 mV。内置电压(Vbi)为 1.17 V,辐照相关理想因子(n)为 1.48,这表明器件的异质结质量得到提高,缺陷重组受到抑制。所提出的两步退火策略和物理机制研究将为高性能 Sb2S3 太阳能电池开辟新的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science China Materials
Science China Materials Materials Science-General Materials Science
CiteScore
11.40
自引率
7.40%
发文量
949
期刊介绍: Science China Materials (SCM) is a globally peer-reviewed journal that covers all facets of materials science. It is supervised by the Chinese Academy of Sciences and co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China. The journal is jointly published monthly in both printed and electronic forms by Science China Press and Springer. The aim of SCM is to encourage communication of high-quality, innovative research results at the cutting-edge interface of materials science with chemistry, physics, biology, and engineering. It focuses on breakthroughs from around the world and aims to become a world-leading academic journal for materials science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信