Optimizing the Microenvironment of Pores in an MOF for Boosting Ethylene Purification from a Ternary-Component Mixture

IF 9.6 1区 化学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Peng-Dan Zhang, Xue-Qian Wu, Qi Shuai, Jiamei Yu, Xin Zhang, Jian-Rong Li
{"title":"Optimizing the Microenvironment of Pores in an MOF for Boosting Ethylene Purification from a Ternary-Component Mixture","authors":"Peng-Dan Zhang, Xue-Qian Wu, Qi Shuai, Jiamei Yu, Xin Zhang, Jian-Rong Li","doi":"10.1021/acsmaterialslett.4c01406","DOIUrl":null,"url":null,"abstract":"Designing an adsorbent that can simultaneously trap acetylene (C<sub>2</sub>H<sub>2</sub>) and ethane (C<sub>2</sub>H<sub>6</sub>) impurities for the one-step purification of ethylene (C<sub>2</sub>H<sub>4</sub>) remains a challenge. Herein, we constructed a novel Cu-based metal–organic framework (MOF), BUT-321, which exhibits the selective adsorption of C<sub>2</sub>H<sub>2</sub> and C<sub>2</sub>H<sub>6</sub> over C<sub>2</sub>H<sub>4</sub>. It was found that the high density of oxygen binding sites within the pore channels of BUT-321 can build an optimal environment for stronger interactions with C<sub>2</sub>H<sub>6</sub>, compared to the isostructural MOF BUT-320. Column breakthrough experiments confirm the exceptional C<sub>2</sub>H<sub>4</sub> separation performance of BUT-321 from both binary (1:1 for C<sub>2</sub>H<sub>2</sub>/C<sub>2</sub>H<sub>4</sub> or C<sub>2</sub>H<sub>6</sub>/C<sub>2</sub>H<sub>4</sub>) and ternary (1:1:1 for C<sub>2</sub>H<sub>2</sub>/C<sub>2</sub>H<sub>4</sub>/C<sub>2</sub>H<sub>6</sub>) gas mixtures in a single step. In addition, BUT-321 exhibits good chemical stability in water and an alkaline solution, combined with its synthesis scalability, economic viability, and recyclability, thus facilitating the application for the one-step C<sub>2</sub>H<sub>4</sub> purification.","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":null,"pages":null},"PeriodicalIF":9.6000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Materials Letters","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acsmaterialslett.4c01406","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Designing an adsorbent that can simultaneously trap acetylene (C2H2) and ethane (C2H6) impurities for the one-step purification of ethylene (C2H4) remains a challenge. Herein, we constructed a novel Cu-based metal–organic framework (MOF), BUT-321, which exhibits the selective adsorption of C2H2 and C2H6 over C2H4. It was found that the high density of oxygen binding sites within the pore channels of BUT-321 can build an optimal environment for stronger interactions with C2H6, compared to the isostructural MOF BUT-320. Column breakthrough experiments confirm the exceptional C2H4 separation performance of BUT-321 from both binary (1:1 for C2H2/C2H4 or C2H6/C2H4) and ternary (1:1:1 for C2H2/C2H4/C2H6) gas mixtures in a single step. In addition, BUT-321 exhibits good chemical stability in water and an alkaline solution, combined with its synthesis scalability, economic viability, and recyclability, thus facilitating the application for the one-step C2H4 purification.

Abstract Image

优化 MOF 中孔隙的微环境,提高三元组分混合物中乙烯的纯化率
设计一种能同时吸附乙炔(C2H2)和乙烷(C2H6)杂质的吸附剂以一步法提纯乙烯(C2H4)仍然是一项挑战。在此,我们构建了一种新型铜基金属有机框架 (MOF)--BUT-321,它可以选择性地吸附 C2H2 和 C2H6,而不吸附 C2H4。研究发现,与等结构 MOF BUT-320 相比,BUT-321 孔道内高密度的氧结合位点能为 C2H6 与 C2H2 的更强相互作用创造最佳环境。色谱柱突破实验证实了 BUT-321 从二元(C2H2/C2H4 或 C2H6/C2H4,1:1)和三元(C2H2/C2H4/C2H6,1:1:1)气体混合物中分离 C2H4 的优异性能。此外,BUT-321 在水和碱性溶液中具有良好的化学稳定性,同时还具有合成可扩展性、经济可行性和可回收性,因此有助于一步法 C2H4 纯化的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Materials Letters
ACS Materials Letters MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
14.60
自引率
3.50%
发文量
261
期刊介绍: ACS Materials Letters is a journal that publishes high-quality and urgent papers at the forefront of fundamental and applied research in the field of materials science. It aims to bridge the gap between materials and other disciplines such as chemistry, engineering, and biology. The journal encourages multidisciplinary and innovative research that addresses global challenges. Papers submitted to ACS Materials Letters should clearly demonstrate the need for rapid disclosure of key results. The journal is interested in various areas including the design, synthesis, characterization, and evaluation of emerging materials, understanding the relationships between structure, property, and performance, as well as developing materials for applications in energy, environment, biomedical, electronics, and catalysis. The journal has a 2-year impact factor of 11.4 and is dedicated to publishing transformative materials research with fast processing times. The editors and staff of ACS Materials Letters actively participate in major scientific conferences and engage closely with readers and authors. The journal also maintains an active presence on social media to provide authors with greater visibility.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信