Min Su Kim, Jeong Hui Kim, Hye-young Yoo, Dal-Seong Yoon, Dong Hyun Park, Chae Yoon Lee, Su Jung Kim, Seung-Bok Choi, Kihyon Hong, Keun Hyung Lee
{"title":"Ultrastretchable, Tough, and Highly Conductive Ionogels for Multipurpose Motion Monitoring","authors":"Min Su Kim, Jeong Hui Kim, Hye-young Yoo, Dal-Seong Yoon, Dong Hyun Park, Chae Yoon Lee, Su Jung Kim, Seung-Bok Choi, Kihyon Hong, Keun Hyung Lee","doi":"10.1021/acsmaterialslett.4c01425","DOIUrl":null,"url":null,"abstract":"Stretchable strain sensors have attracted considerable interest for electronic and electrochemical applications, but improving their sensitivity, stretchability, toughness, conductivity, and stability remains a challenge. While ionic conductor-based sensors offer high stretchability (>100%), achieving both robustness and high conductivity is difficult. In this study, ultrastretchable, tough, and highly conductive nonvolatile polymer electrolytes, referred to as ionogels, were devised using a solvent-exchange method. Compared to other gel-type materials, such as organogels and hydrogels, the ionogels exhibit outstanding elasticity (>1000% strain at break), toughness (∼100 MJ m<sup>–3</sup>), and ionic conductivity of (∼20.5 mS cm<sup>–1</sup>). These ionogels were successfully applied to sensing devices, and the resulting sensors exhibited excellent linearity, sensitivity, repeatability, and operational durability. Furthermore, the sensors accurately detected the movements of various vehicle parts, including the suspension damper, door hinge, and seat coil, indicating the potential of mechanically tough ionogels for multipurpose sensing systems.","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":null,"pages":null},"PeriodicalIF":9.6000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Materials Letters","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acsmaterialslett.4c01425","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Stretchable strain sensors have attracted considerable interest for electronic and electrochemical applications, but improving their sensitivity, stretchability, toughness, conductivity, and stability remains a challenge. While ionic conductor-based sensors offer high stretchability (>100%), achieving both robustness and high conductivity is difficult. In this study, ultrastretchable, tough, and highly conductive nonvolatile polymer electrolytes, referred to as ionogels, were devised using a solvent-exchange method. Compared to other gel-type materials, such as organogels and hydrogels, the ionogels exhibit outstanding elasticity (>1000% strain at break), toughness (∼100 MJ m–3), and ionic conductivity of (∼20.5 mS cm–1). These ionogels were successfully applied to sensing devices, and the resulting sensors exhibited excellent linearity, sensitivity, repeatability, and operational durability. Furthermore, the sensors accurately detected the movements of various vehicle parts, including the suspension damper, door hinge, and seat coil, indicating the potential of mechanically tough ionogels for multipurpose sensing systems.
期刊介绍:
ACS Materials Letters is a journal that publishes high-quality and urgent papers at the forefront of fundamental and applied research in the field of materials science. It aims to bridge the gap between materials and other disciplines such as chemistry, engineering, and biology. The journal encourages multidisciplinary and innovative research that addresses global challenges. Papers submitted to ACS Materials Letters should clearly demonstrate the need for rapid disclosure of key results. The journal is interested in various areas including the design, synthesis, characterization, and evaluation of emerging materials, understanding the relationships between structure, property, and performance, as well as developing materials for applications in energy, environment, biomedical, electronics, and catalysis. The journal has a 2-year impact factor of 11.4 and is dedicated to publishing transformative materials research with fast processing times. The editors and staff of ACS Materials Letters actively participate in major scientific conferences and engage closely with readers and authors. The journal also maintains an active presence on social media to provide authors with greater visibility.