Improved electron transport in planar perovskite solar cells using TiO2, SnO2 and WO3 ultra-thin layers: a comparison on all single layer and bilayer structures

IF 1.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Mozhgan Kazemzadeh Otoufi, Ahmad Kermanpur
{"title":"Improved electron transport in planar perovskite solar cells using TiO2, SnO2 and WO3 ultra-thin layers: a comparison on all single layer and bilayer structures","authors":"Mozhgan Kazemzadeh Otoufi,&nbsp;Ahmad Kermanpur","doi":"10.1007/s12034-024-03170-y","DOIUrl":null,"url":null,"abstract":"<div><p>To achieve high performance in perovskite solar cells (PSCs), it is very vital to engineer the recombination and extraction of the hole–electron pairs at the electron transport layer (ETL)/perovskite interface. In this research, the main idea is to improve the photovoltaic performance of the cells by modifying the compact ETL surface (≈50 nm thick) by inserting a &lt;10 nm thick ultra-thin layer (UTL) of metal oxide. For this purpose, all types of single layer and bilayer structured ETLs of TiO<sub>2</sub>, SnO<sub>2</sub> and WO<sub>3</sub>, i.e., three common metal oxide electron transport materials in PSCs, were fabricated using the reproducible and industry-compatible radio-frequency sputtering method and their function as ETLs was then compared. These ETLs and cells were characterized for structural and electrical properties by FESEM, XRD, Mott–Schottky analysis, UV–Vis spectroscopy and <i>J–V</i> measurements. It was found that a significant increase in cell efficiency is achieved due to more efficient energy band alignment using the bilayer structures of TiO<sub>2</sub>/WO<sub>3</sub>-UTL, SnO<sub>2</sub>/WO<sub>3</sub>-UTL and TiO<sub>2</sub>/SnO<sub>2</sub>-UTL. Conversely, reduced efficiency is observed when using their inverted structures, namely WO<sub>3</sub>/TiO<sub>2</sub>-UTL, WO<sub>3</sub>/SnO<sub>2</sub>-UTL and SnO<sub>2</sub>/TiO<sub>2</sub>-UTL. These results suggest a simple and promising strategy to increase the efficiency of photovoltaic devices.</p></div>","PeriodicalId":502,"journal":{"name":"Bulletin of Materials Science","volume":"47 3","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12034-024-03170-y","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

To achieve high performance in perovskite solar cells (PSCs), it is very vital to engineer the recombination and extraction of the hole–electron pairs at the electron transport layer (ETL)/perovskite interface. In this research, the main idea is to improve the photovoltaic performance of the cells by modifying the compact ETL surface (≈50 nm thick) by inserting a <10 nm thick ultra-thin layer (UTL) of metal oxide. For this purpose, all types of single layer and bilayer structured ETLs of TiO2, SnO2 and WO3, i.e., three common metal oxide electron transport materials in PSCs, were fabricated using the reproducible and industry-compatible radio-frequency sputtering method and their function as ETLs was then compared. These ETLs and cells were characterized for structural and electrical properties by FESEM, XRD, Mott–Schottky analysis, UV–Vis spectroscopy and J–V measurements. It was found that a significant increase in cell efficiency is achieved due to more efficient energy band alignment using the bilayer structures of TiO2/WO3-UTL, SnO2/WO3-UTL and TiO2/SnO2-UTL. Conversely, reduced efficiency is observed when using their inverted structures, namely WO3/TiO2-UTL, WO3/SnO2-UTL and SnO2/TiO2-UTL. These results suggest a simple and promising strategy to increase the efficiency of photovoltaic devices.

Abstract Image

使用 TiO2、SnO2 和 WO3 超薄层改善平面过氧化物太阳能电池中的电子传输:所有单层和双层结构的比较
要实现过氧化物太阳能电池(PSCs)的高性能,在电子传输层(ETL)/过氧化物界面上设计空穴-电子对的重组和萃取至关重要。本研究的主要思路是通过插入 10 纳米厚的超薄金属氧化物层 (UTL),改变紧凑的 ETL 表面(厚度≈50 纳米),从而提高电池的光电性能。为此,我们采用可重复的、工业兼容的射频溅射方法,制造了TiO2、SnO2和WO3(即PSC中三种常见的金属氧化物电子传输材料)的各种类型的单层和双层结构ETL,然后比较了它们作为ETL的功能。通过 FESEM、XRD、Mott-Schottky 分析、紫外-可见光谱和 J-V 测量,对这些 ETL 和电池的结构和电气特性进行了表征。研究发现,由于采用了 TiO2/WO3-UTL、SnO2/WO3-UTL 和 TiO2/SnO2-UTL 的双层结构,能带排列效率更高,因此电池效率显著提高。相反,使用它们的倒置结构,即 WO3/TiO2-UTL、WO3/SnO2-UTL 和 SnO2/TiO2-UTL,则会降低效率。这些结果为提高光伏设备的效率提供了一种简单而有前景的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bulletin of Materials Science
Bulletin of Materials Science 工程技术-材料科学:综合
CiteScore
3.40
自引率
5.60%
发文量
209
审稿时长
11.5 months
期刊介绍: The Bulletin of Materials Science is a bi-monthly journal being published by the Indian Academy of Sciences in collaboration with the Materials Research Society of India and the Indian National Science Academy. The journal publishes original research articles, review articles and rapid communications in all areas of materials science. The journal also publishes from time to time important Conference Symposia/ Proceedings which are of interest to materials scientists. It has an International Advisory Editorial Board and an Editorial Committee. The Bulletin accords high importance to the quality of articles published and to keep at a minimum the processing time of papers submitted for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信