Yibo Liu, Guobin Wang, Feng Feng, Mengyuan Zhanghu, Zhengnan Yuan, Zichun Li, Ke Xu, Hoi Sing Kwok, Zhaojun Liu
{"title":"Ultra-low-defect homoepitaxial micro-LEDs with enhanced efficiency and monochromaticity for high-PPI AR/MR displays","authors":"Yibo Liu, Guobin Wang, Feng Feng, Mengyuan Zhanghu, Zhengnan Yuan, Zichun Li, Ke Xu, Hoi Sing Kwok, Zhaojun Liu","doi":"10.1186/s43074-024-00137-4","DOIUrl":null,"url":null,"abstract":"<p>The issue of brightness in strong ambient light conditions is one of the critical obstacles restricting the application of augmented reality (AR) and mixed reality (MR). Gallium nitride (GaN)-based micro-LEDs, renowned for their exceptional brightness and stability, are considered the foremost contenders for AR applications. Nevertheless, conventional heteroepitaxial growth micro-LED devices confront formidable challenges, including substantial wavelength shifts and efficiency droop. In this paper, we firstly demonstrated the high-quality homoepitaxial GaN-on-GaN micro-LEDs micro-display, and thoroughly analyzed the possible benefits for free-standing GaN substrate from the material-level characterization to device optoelectronic properties and micro-display application compared with sapphire substrate. The GaN-on-GaN structure exhibits a superior crystal quality with ultra-low threading dislocation densities (TDDs) of ~ 10<sup>5</sup> cm<sup>−2</sup>, which is three orders of magnitude lower than that of GaN-on-Sapphire. Through an in-depth size-dependent optoelectronic analysis of blue/green emission GaN-on-GaN/ Sapphire micro-LEDs from 100 × 100 shrink to 3 × 3 μm<sup>2</sup>, real that a lower forward voltage and series resistance, a consistent emission wavelength (1.21 nm for blue and 4.79 nm for green @ 500 A/cm<sup>2</sup>), coupled with a notable reduction in efficiency droop ratios (15.6% for blue and 28.5% for green @ 500 A/cm<sup>2</sup>) and expanded color gamut (103.57% over Rec. 2020) within GaN-on-GaN 10 μm micro-LEDs. Last but not least, the GaN-on-GaN micro-display with 3000 pixels per inch (PPI) showcased enhanced display uniformity and higher luminance in comparison to its GaN-on-Sapphire counterpart, demonstrating significant potentials for high-brightness AR/MR applications under strong ambient light.</p>","PeriodicalId":93483,"journal":{"name":"PhotoniX","volume":"58 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PhotoniX","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s43074-024-00137-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
The issue of brightness in strong ambient light conditions is one of the critical obstacles restricting the application of augmented reality (AR) and mixed reality (MR). Gallium nitride (GaN)-based micro-LEDs, renowned for their exceptional brightness and stability, are considered the foremost contenders for AR applications. Nevertheless, conventional heteroepitaxial growth micro-LED devices confront formidable challenges, including substantial wavelength shifts and efficiency droop. In this paper, we firstly demonstrated the high-quality homoepitaxial GaN-on-GaN micro-LEDs micro-display, and thoroughly analyzed the possible benefits for free-standing GaN substrate from the material-level characterization to device optoelectronic properties and micro-display application compared with sapphire substrate. The GaN-on-GaN structure exhibits a superior crystal quality with ultra-low threading dislocation densities (TDDs) of ~ 105 cm−2, which is three orders of magnitude lower than that of GaN-on-Sapphire. Through an in-depth size-dependent optoelectronic analysis of blue/green emission GaN-on-GaN/ Sapphire micro-LEDs from 100 × 100 shrink to 3 × 3 μm2, real that a lower forward voltage and series resistance, a consistent emission wavelength (1.21 nm for blue and 4.79 nm for green @ 500 A/cm2), coupled with a notable reduction in efficiency droop ratios (15.6% for blue and 28.5% for green @ 500 A/cm2) and expanded color gamut (103.57% over Rec. 2020) within GaN-on-GaN 10 μm micro-LEDs. Last but not least, the GaN-on-GaN micro-display with 3000 pixels per inch (PPI) showcased enhanced display uniformity and higher luminance in comparison to its GaN-on-Sapphire counterpart, demonstrating significant potentials for high-brightness AR/MR applications under strong ambient light.