Yongbo Si, Kun Li, Zihao Ding, Shixun Zhang, Xiaoli Zhang, Xia Liao, Yang Yang, Xiaoqin Guo, Jingbo Chen
{"title":"Multiple layered PVDF-CNTs foams with gradient structure and high electromagnetic shielding performance","authors":"Yongbo Si, Kun Li, Zihao Ding, Shixun Zhang, Xiaoli Zhang, Xia Liao, Yang Yang, Xiaoqin Guo, Jingbo Chen","doi":"10.1007/s10965-024-04102-4","DOIUrl":null,"url":null,"abstract":"<div><p>Multiple layered PVDF-CNTs with different CNTs were prepared by facile melt blending process. Due to varied electrical conductivity in each layer, incident electromagnetic (EM) waves could be reflected and absorbed between these layers, and thus their electromagnetic interference (EMI) efficiency was obviously improved. EMI shielding effectiveness of a three- layered PVDF-CNTs with CNTs content of 6, 8, 10 wt. % sequentially, is 36.4 dB, compared to a 27.2 dB of single layered PVDF-8CNTs with a same sample thickness of 2 mm, an increase of 34% was induced. Furthermore, based on different viscoelasticity of PVDF-CNTs with various CNTs content, three- layered PVDF-6–8-10 CNTs foams with a gradient cell structure and thickness of 2 mm, were manufactured by an environment friendly supercritical CO<sub>2</sub> batch foaming method, an absolute EM SE value of 35.2 dB at a frequency of 26 GHz was measured. Because of the introduction of microcellular sized cells, the electromagnetic waves were absorbed and reflected inside the cells, cooperated with the multiple reflections between different layers, an increased absorption dominated mechanism in these foamed PVDF-CNTs composites was resulted, which means a successful mechanism transformation from reflection to absorption after foaming.</p></div>","PeriodicalId":658,"journal":{"name":"Journal of Polymer Research","volume":"31 9","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymer Research","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10965-024-04102-4","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Multiple layered PVDF-CNTs with different CNTs were prepared by facile melt blending process. Due to varied electrical conductivity in each layer, incident electromagnetic (EM) waves could be reflected and absorbed between these layers, and thus their electromagnetic interference (EMI) efficiency was obviously improved. EMI shielding effectiveness of a three- layered PVDF-CNTs with CNTs content of 6, 8, 10 wt. % sequentially, is 36.4 dB, compared to a 27.2 dB of single layered PVDF-8CNTs with a same sample thickness of 2 mm, an increase of 34% was induced. Furthermore, based on different viscoelasticity of PVDF-CNTs with various CNTs content, three- layered PVDF-6–8-10 CNTs foams with a gradient cell structure and thickness of 2 mm, were manufactured by an environment friendly supercritical CO2 batch foaming method, an absolute EM SE value of 35.2 dB at a frequency of 26 GHz was measured. Because of the introduction of microcellular sized cells, the electromagnetic waves were absorbed and reflected inside the cells, cooperated with the multiple reflections between different layers, an increased absorption dominated mechanism in these foamed PVDF-CNTs composites was resulted, which means a successful mechanism transformation from reflection to absorption after foaming.
期刊介绍:
Journal of Polymer Research provides a forum for the prompt publication of articles concerning the fundamental and applied research of polymers. Its great feature lies in the diversity of content which it encompasses, drawing together results from all aspects of polymer science and technology.
As polymer research is rapidly growing around the globe, the aim of this journal is to establish itself as a significant information tool not only for the international polymer researchers in academia but also for those working in industry. The scope of the journal covers a wide range of the highly interdisciplinary field of polymer science and technology, including:
polymer synthesis;
polymer reactions;
polymerization kinetics;
polymer physics;
morphology;
structure-property relationships;
polymer analysis and characterization;
physical and mechanical properties;
electrical and optical properties;
polymer processing and rheology;
application of polymers;
supramolecular science of polymers;
polymer composites.