Y. B. Wang, L. Ren, H. N. Gan, Y. G. Han, M. F. Xu, Y. H. Wang, Q. Liu, M. Y. Zhang
{"title":"Simultaneously improving toughness and strength for biodegradable Poly (lactic acid) modified by rice husk and acetyl tributyl citrate","authors":"Y. B. Wang, L. Ren, H. N. Gan, Y. G. Han, M. F. Xu, Y. H. Wang, Q. Liu, M. Y. Zhang","doi":"10.1007/s10965-024-04127-9","DOIUrl":null,"url":null,"abstract":"<div><p>Developing a stiffness-toughness balance, low-cost, and biodegradable PLA composite is an effective strategy for improving product market competitiveness, reducing dependence on petroleum-based resources and protecting the environment. Rice husk (RH) is extensively used as a filler in polymers, but the addition of too much rice husk into PLA has damaged the toughness of the composite. In this work, fully biodegradable composites with a stiffness-toughness balance and low cost are successfully fabricated through melt blending of PLA, RH and acetyl tributyl citrate (ATBC), named PLAC0, PLAC3, PLAC6, PLAC9, PLAC12, PLAC15, PLAC18, PLAC20 respectively according to amount of ATBC (0phr, 3phr, 6phr, 9phr, 12phr, 15phr, 18phr, 20phr). The results show that bio-based plasticizer ATBC can improve the flowability of PLA composites, further enhancing their processability, which promotes the dispersion of RH in PLA. The impact strength and elongation at break of PLAC20 reach the value of 100 J/m and 148%, achieving an increase of 4.3 and 60.1 times compared with PLAC0, respectively. The torque rheological test shows that the maximum torque and equilibrium torque of PLAC18 decrease by about 67.4% and 63.5% respectively compared to PLAC0. This suggests a decrease in friction between PLA molecular chains, thereby increasing the fluidity of PLA composites and indicating a significant improvement in processing performance. As the ATBC amount increases, the water absorption rate of the composite progressively rises, while the contact angle steadily diminishes, resulting in the improvement for hydrophilicity, thereby broadening its potential applications.</p></div>","PeriodicalId":658,"journal":{"name":"Journal of Polymer Research","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymer Research","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10965-024-04127-9","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Developing a stiffness-toughness balance, low-cost, and biodegradable PLA composite is an effective strategy for improving product market competitiveness, reducing dependence on petroleum-based resources and protecting the environment. Rice husk (RH) is extensively used as a filler in polymers, but the addition of too much rice husk into PLA has damaged the toughness of the composite. In this work, fully biodegradable composites with a stiffness-toughness balance and low cost are successfully fabricated through melt blending of PLA, RH and acetyl tributyl citrate (ATBC), named PLAC0, PLAC3, PLAC6, PLAC9, PLAC12, PLAC15, PLAC18, PLAC20 respectively according to amount of ATBC (0phr, 3phr, 6phr, 9phr, 12phr, 15phr, 18phr, 20phr). The results show that bio-based plasticizer ATBC can improve the flowability of PLA composites, further enhancing their processability, which promotes the dispersion of RH in PLA. The impact strength and elongation at break of PLAC20 reach the value of 100 J/m and 148%, achieving an increase of 4.3 and 60.1 times compared with PLAC0, respectively. The torque rheological test shows that the maximum torque and equilibrium torque of PLAC18 decrease by about 67.4% and 63.5% respectively compared to PLAC0. This suggests a decrease in friction between PLA molecular chains, thereby increasing the fluidity of PLA composites and indicating a significant improvement in processing performance. As the ATBC amount increases, the water absorption rate of the composite progressively rises, while the contact angle steadily diminishes, resulting in the improvement for hydrophilicity, thereby broadening its potential applications.
期刊介绍:
Journal of Polymer Research provides a forum for the prompt publication of articles concerning the fundamental and applied research of polymers. Its great feature lies in the diversity of content which it encompasses, drawing together results from all aspects of polymer science and technology.
As polymer research is rapidly growing around the globe, the aim of this journal is to establish itself as a significant information tool not only for the international polymer researchers in academia but also for those working in industry. The scope of the journal covers a wide range of the highly interdisciplinary field of polymer science and technology, including:
polymer synthesis;
polymer reactions;
polymerization kinetics;
polymer physics;
morphology;
structure-property relationships;
polymer analysis and characterization;
physical and mechanical properties;
electrical and optical properties;
polymer processing and rheology;
application of polymers;
supramolecular science of polymers;
polymer composites.