Fabrication of piezoelectric poly(l‐lactic acid) nanofiber membranes with controllable properties

IF 3.1 4区 工程技术 Q2 POLYMER SCIENCE
Jie Cheng, Yonghao Yang, Chen Zhang, Xuechun Dong, Jinbo Liu, Gensheng Wu, Gutian Zhao, Zhonghua Ni
{"title":"Fabrication of piezoelectric poly(l‐lactic acid) nanofiber membranes with controllable properties","authors":"Jie Cheng, Yonghao Yang, Chen Zhang, Xuechun Dong, Jinbo Liu, Gensheng Wu, Gutian Zhao, Zhonghua Ni","doi":"10.1002/pat.6542","DOIUrl":null,"url":null,"abstract":"Poly(l‐lactic acid) (PLLA) material has superior biocompatibility, degradability, and piezoelectricity, which have been chosen to fabricate electrospinning membranes to provide high surface area, porosity, and flexibility as applied in implantable medical devices. In this study, PLLA nanofiber membranes with adjustable performance were successfully prepared. The piezoelectricity, mechanical properties, and wettability could be tuned by the molecular weight of PLLA and the concentration of PLLA‐Dichloromethane (DCM) solution. The maximum output voltage of the PLLA nanofiber membranes could be adjusted from 0.28 to 0.55 V, and the breaking strength could vary in the range of 6.3–10.1 MPa. Furthermore, the elongation at break can be adjusted between 22% and 142%. In addition, the wettability of PLLA nanofiber membranes could be changed from hydrophobic state to hydrophilic state by surface treatment techniques. The excellent biocompatibility was further demonstrated by cell culture on hydrophilic membranes. These results implied that the molecular weight of PLLA and the concentration of PLLA‐DCM solutions could be an effective method to regulate characteristics of electrospinning membranes, which can provide more application possibilities for implantable medical devices.","PeriodicalId":20382,"journal":{"name":"Polymers for Advanced Technologies","volume":"2 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers for Advanced Technologies","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/pat.6542","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Poly(l‐lactic acid) (PLLA) material has superior biocompatibility, degradability, and piezoelectricity, which have been chosen to fabricate electrospinning membranes to provide high surface area, porosity, and flexibility as applied in implantable medical devices. In this study, PLLA nanofiber membranes with adjustable performance were successfully prepared. The piezoelectricity, mechanical properties, and wettability could be tuned by the molecular weight of PLLA and the concentration of PLLA‐Dichloromethane (DCM) solution. The maximum output voltage of the PLLA nanofiber membranes could be adjusted from 0.28 to 0.55 V, and the breaking strength could vary in the range of 6.3–10.1 MPa. Furthermore, the elongation at break can be adjusted between 22% and 142%. In addition, the wettability of PLLA nanofiber membranes could be changed from hydrophobic state to hydrophilic state by surface treatment techniques. The excellent biocompatibility was further demonstrated by cell culture on hydrophilic membranes. These results implied that the molecular weight of PLLA and the concentration of PLLA‐DCM solutions could be an effective method to regulate characteristics of electrospinning membranes, which can provide more application possibilities for implantable medical devices.
制备具有可控特性的压电聚(l-乳酸)纳米纤维膜
聚乳酸(PLLA)材料具有良好的生物相容性、可降解性和压电性,因此被用于制造电纺丝膜,以提供高比表面积、多孔性和柔韧性,应用于植入式医疗器械。本研究成功制备了性能可调的聚乳酸纳米纤维膜。压电性、机械性能和润湿性可通过聚乳酸的分子量和聚乳酸-二氯甲烷(DCM)溶液的浓度进行调节。聚乳酸纳米纤维膜的最大输出电压可在 0.28 至 0.55 V 之间调节,断裂强度可在 6.3 至 10.1 MPa 之间变化。此外,断裂伸长率可在 22% 至 142% 之间调节。此外,聚乳酸纳米纤维膜的润湿性可通过表面处理技术从疏水状态变为亲水状态。亲水膜上的细胞培养进一步证明了其优异的生物相容性。这些结果表明,聚乳酸的分子量和聚乳酸-DCM溶液的浓度是调节电纺丝膜特性的有效方法,可为植入式医疗器械提供更多的应用可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Polymers for Advanced Technologies
Polymers for Advanced Technologies 工程技术-高分子科学
CiteScore
6.20
自引率
5.90%
发文量
337
审稿时长
2.1 months
期刊介绍: Polymers for Advanced Technologies is published in response to recent significant changes in the patterns of materials research and development. Worldwide attention has been focused on the critical importance of materials in the creation of new devices and systems. It is now recognized that materials are often the limiting factor in bringing a new technical concept to fruition and that polymers are often the materials of choice in these demanding applications. A significant portion of the polymer research ongoing in the world is directly or indirectly related to the solution of complex, interdisciplinary problems whose successful resolution is necessary for achievement of broad system objectives. Polymers for Advanced Technologies is focused to the interest of scientists and engineers from academia and industry who are participating in these new areas of polymer research and development. It is the intent of this journal to impact the polymer related advanced technologies to meet the challenge of the twenty-first century. Polymers for Advanced Technologies aims at encouraging innovation, invention, imagination and creativity by providing a broad interdisciplinary platform for the presentation of new research and development concepts, theories and results which reflect the changing image and pace of modern polymer science and technology. Polymers for Advanced Technologies aims at becoming the central organ of the new multi-disciplinary polymer oriented materials science of the highest scientific standards. It will publish original research papers on finished studies; communications limited to five typewritten pages plus three illustrations, containing experimental details; review articles of up to 40 pages; letters to the editor and book reviews. Review articles will normally be published by invitation. The Editor-in-Chief welcomes suggestions for reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信