Cashew tree gum exudate as a biopolymer electrolyte: The influence of glycerol plasticization

IF 3.1 4区 工程技术 Q2 POLYMER SCIENCE
I. D. Anyaogu, A. C. Nwanya, F. I. Ezema, P. M. Ejikeme
{"title":"Cashew tree gum exudate as a biopolymer electrolyte: The influence of glycerol plasticization","authors":"I. D. Anyaogu, A. C. Nwanya, F. I. Ezema, P. M. Ejikeme","doi":"10.1002/pat.6535","DOIUrl":null,"url":null,"abstract":"Gel polymer electrolytes were produced using cashew tree gum exudate dissolved in water with varying glycerol proportions and cast as films with different degrees of plasticization. The films' electrical, dielectric, and ion transport properties were measured using electrochemical impedance spectra. The films exhibited non‐Debye character manifesting a distribution of relaxation times. The conductivity of the films increased up to 10<jats:sup>−6</jats:sup> Scm<jats:sup>−1</jats:sup> at 10% glycerol content. The relaxation time and diffusion coefficient values varied from 6.48 × 10<jats:sup>−3</jats:sup> to 3.9110<jats:sup>−5</jats:sup> s and 9.89 × 10<jats:sup>−8</jats:sup> to 1.81 × 10<jats:sup>−3</jats:sup> cm<jats:sup>2</jats:sup>s<jats:sup>−1</jats:sup>, respectively. The ion mobility ranged from 3.79 × 10<jats:sup>−13</jats:sup> to 6.98 × 10<jats:sup>−9</jats:sup> cm<jats:sup>2</jats:sup>v<jats:sup>−1</jats:sup> s<jats:sup>−1</jats:sup>, and the number density ranged from 1.74 × 10<jats:sup>21</jats:sup> to 1.60 × 10<jats:sup>23</jats:sup> cm<jats:sup>−3</jats:sup>. Energy dispersive X‐ray fluorescence (EDXRF) analysis revealed the presence of several elements, primarily Ca, Ba, Na, and K. The constitution and morphology of the films were further examined using FTIR, and XRD, techniques.","PeriodicalId":20382,"journal":{"name":"Polymers for Advanced Technologies","volume":"16 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers for Advanced Technologies","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/pat.6535","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Gel polymer electrolytes were produced using cashew tree gum exudate dissolved in water with varying glycerol proportions and cast as films with different degrees of plasticization. The films' electrical, dielectric, and ion transport properties were measured using electrochemical impedance spectra. The films exhibited non‐Debye character manifesting a distribution of relaxation times. The conductivity of the films increased up to 10−6 Scm−1 at 10% glycerol content. The relaxation time and diffusion coefficient values varied from 6.48 × 10−3 to 3.9110−5 s and 9.89 × 10−8 to 1.81 × 10−3 cm2s−1, respectively. The ion mobility ranged from 3.79 × 10−13 to 6.98 × 10−9 cm2v−1 s−1, and the number density ranged from 1.74 × 1021 to 1.60 × 1023 cm−3. Energy dispersive X‐ray fluorescence (EDXRF) analysis revealed the presence of several elements, primarily Ca, Ba, Na, and K. The constitution and morphology of the films were further examined using FTIR, and XRD, techniques.
作为生物聚合物电解质的腰果树胶渗出物:甘油塑化的影响
利用腰果树胶渗出物溶于不同甘油比例的水制成凝胶聚合物电解质,并浇铸成不同塑化程度的薄膜。利用电化学阻抗谱测量了薄膜的电学、介电和离子传输特性。薄膜呈现出非德拜特性,表现出弛豫时间的分布。当甘油含量为 10%时,薄膜的电导率最高可达 10-6 Scm-1。弛豫时间和扩散系数值分别从 6.48 × 10-3 到 3.9110-5 s 和 9.89 × 10-8 到 1.81 × 10-3 cm2s-1 不等。离子迁移率范围为 3.79 × 10-13 至 6.98 × 10-9 cm2v-1 s-1,数量密度范围为 1.74 × 1021 至 1.60 × 1023 cm-3。能量色散 X 射线荧光(EDXRF)分析表明存在多种元素,主要是 Ca、Ba、Na 和 K。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Polymers for Advanced Technologies
Polymers for Advanced Technologies 工程技术-高分子科学
CiteScore
6.20
自引率
5.90%
发文量
337
审稿时长
2.1 months
期刊介绍: Polymers for Advanced Technologies is published in response to recent significant changes in the patterns of materials research and development. Worldwide attention has been focused on the critical importance of materials in the creation of new devices and systems. It is now recognized that materials are often the limiting factor in bringing a new technical concept to fruition and that polymers are often the materials of choice in these demanding applications. A significant portion of the polymer research ongoing in the world is directly or indirectly related to the solution of complex, interdisciplinary problems whose successful resolution is necessary for achievement of broad system objectives. Polymers for Advanced Technologies is focused to the interest of scientists and engineers from academia and industry who are participating in these new areas of polymer research and development. It is the intent of this journal to impact the polymer related advanced technologies to meet the challenge of the twenty-first century. Polymers for Advanced Technologies aims at encouraging innovation, invention, imagination and creativity by providing a broad interdisciplinary platform for the presentation of new research and development concepts, theories and results which reflect the changing image and pace of modern polymer science and technology. Polymers for Advanced Technologies aims at becoming the central organ of the new multi-disciplinary polymer oriented materials science of the highest scientific standards. It will publish original research papers on finished studies; communications limited to five typewritten pages plus three illustrations, containing experimental details; review articles of up to 40 pages; letters to the editor and book reviews. Review articles will normally be published by invitation. The Editor-in-Chief welcomes suggestions for reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信