Abjesh Prasad Rath, P. Santhana Gopala Krishnan, Krishnan Kanny
{"title":"A comparison of physical, morphological, and mechanical properties of bio‐polyester hybrid nanocomposites","authors":"Abjesh Prasad Rath, P. Santhana Gopala Krishnan, Krishnan Kanny","doi":"10.1002/pat.6566","DOIUrl":null,"url":null,"abstract":"It is imperative to improve the physical, morphological, and mechanical properties of biodegradable polymers like polylactic acid (PLA), poly (butylene adipate‐co‐terephthalate) (PBAT), and polycaprolactone (PCL) in order to employ them on a larger scale. The development of hybrid nanocomposite materials using nano inclusions can improve desired qualities. Here we introduced an interactive nano reinforcement approach to improve the properties by combining graphene oxide (GO) and carboxyl functionalized MWCNT (f‐MWCNT), to provide for their chemical bonding for synergic reinforcement. A constant filler 2 wt.% was added to the biopolyesters by melt blending process and examined the different physical properties like water absorption, intrinsic viscosity, and hardness. To completely evaluate the functionalization of the nanofillers, wide‐angle X‐ray diffraction (WAXD), Raman spectroscopy and Fourier transform infrared radiation (FTIR) analyses were used. The paired nanoparticles and polymer matrix appear to mix well together, as shown by electron microscopy, which also reveals good dispersion and the creation of a reinforcing network microstructure across the matrix layer. A thorough analysis of the results showed that effective stress transmission, delaying the start of faults and generating microcracks, and dissipating additional mechanical energy all contributed to efficient hybrid network formation, which improved the mechanical properties of hybrid filler nanocomposites except some nanocomposites. These findings offer a viable technique for chemically altering biodegradable polymers, like PLA, PBAT, and PCL for use in biomedical, wastewater management, and agricultural applications.","PeriodicalId":20382,"journal":{"name":"Polymers for Advanced Technologies","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers for Advanced Technologies","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/pat.6566","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
It is imperative to improve the physical, morphological, and mechanical properties of biodegradable polymers like polylactic acid (PLA), poly (butylene adipate‐co‐terephthalate) (PBAT), and polycaprolactone (PCL) in order to employ them on a larger scale. The development of hybrid nanocomposite materials using nano inclusions can improve desired qualities. Here we introduced an interactive nano reinforcement approach to improve the properties by combining graphene oxide (GO) and carboxyl functionalized MWCNT (f‐MWCNT), to provide for their chemical bonding for synergic reinforcement. A constant filler 2 wt.% was added to the biopolyesters by melt blending process and examined the different physical properties like water absorption, intrinsic viscosity, and hardness. To completely evaluate the functionalization of the nanofillers, wide‐angle X‐ray diffraction (WAXD), Raman spectroscopy and Fourier transform infrared radiation (FTIR) analyses were used. The paired nanoparticles and polymer matrix appear to mix well together, as shown by electron microscopy, which also reveals good dispersion and the creation of a reinforcing network microstructure across the matrix layer. A thorough analysis of the results showed that effective stress transmission, delaying the start of faults and generating microcracks, and dissipating additional mechanical energy all contributed to efficient hybrid network formation, which improved the mechanical properties of hybrid filler nanocomposites except some nanocomposites. These findings offer a viable technique for chemically altering biodegradable polymers, like PLA, PBAT, and PCL for use in biomedical, wastewater management, and agricultural applications.
期刊介绍:
Polymers for Advanced Technologies is published in response to recent significant changes in the patterns of materials research and development. Worldwide attention has been focused on the critical importance of materials in the creation of new devices and systems. It is now recognized that materials are often the limiting factor in bringing a new technical concept to fruition and that polymers are often the materials of choice in these demanding applications. A significant portion of the polymer research ongoing in the world is directly or indirectly related to the solution of complex, interdisciplinary problems whose successful resolution is necessary for achievement of broad system objectives.
Polymers for Advanced Technologies is focused to the interest of scientists and engineers from academia and industry who are participating in these new areas of polymer research and development. It is the intent of this journal to impact the polymer related advanced technologies to meet the challenge of the twenty-first century.
Polymers for Advanced Technologies aims at encouraging innovation, invention, imagination and creativity by providing a broad interdisciplinary platform for the presentation of new research and development concepts, theories and results which reflect the changing image and pace of modern polymer science and technology.
Polymers for Advanced Technologies aims at becoming the central organ of the new multi-disciplinary polymer oriented materials science of the highest scientific standards. It will publish original research papers on finished studies; communications limited to five typewritten pages plus three illustrations, containing experimental details; review articles of up to 40 pages; letters to the editor and book reviews. Review articles will normally be published by invitation. The Editor-in-Chief welcomes suggestions for reviews.