Prandtl number dependence of flow topology in quasi-two-dimensional turbulent Rayleigh–Bénard convection

IF 3.6 2区 工程技术 Q1 MECHANICS
Ze-Hao Wang, Xin Chen, Ao Xu, Heng-Dong Xi
{"title":"Prandtl number dependence of flow topology in quasi-two-dimensional turbulent Rayleigh–Bénard convection","authors":"Ze-Hao Wang, Xin Chen, Ao Xu, Heng-Dong Xi","doi":"10.1017/jfm.2024.550","DOIUrl":null,"url":null,"abstract":"To date, a comprehensive understanding of the influence of the Prandtl number (<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005500_inline1.png\"/> <jats:tex-math>$Pr$</jats:tex-math> </jats:alternatives> </jats:inline-formula>) on flow topology in turbulent Rayleigh–Bénard convection (RBC) remains elusive. In this study, we present an experimental investigation into the evolution of flow topology in quasi-two-dimensional turbulent RBC with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005500_inline4.png\"/> <jats:tex-math>$7.0 \\leq Pr \\leq 244.2$</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005500_inline5.png\"/> <jats:tex-math>$2.03\\times 10^{8} \\leq Ra \\leq 2.81\\times 10^{9}$</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Particle image velocimetry (PIV) measurements reveal the flow transitions from multiple-roll state to single-roll state with increasing <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005500_inline6.png\"/> <jats:tex-math>$Ra$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, and the transition is hindered with increasing <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005500_inline7.png\"/> <jats:tex-math>$Pr$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, i.e. the transitional Rayleigh number <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005500_inline8.png\"/> <jats:tex-math>$Ra_t$</jats:tex-math> </jats:alternatives> </jats:inline-formula> increases with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005500_inline9.png\"/> <jats:tex-math>$Pr$</jats:tex-math> </jats:alternatives> </jats:inline-formula>. We mapped out a phase diagram on the flow topology change on <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005500_inline10.png\"/> <jats:tex-math>$Ra$</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005500_inline11.png\"/> <jats:tex-math>$Pr$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, and identified the scaling of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005500_inline12.png\"/> <jats:tex-math>$Ra_t$</jats:tex-math> </jats:alternatives> </jats:inline-formula> on <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005500_inline13.png\"/> <jats:tex-math>$Pr$</jats:tex-math> </jats:alternatives> </jats:inline-formula>: <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005500_inline14.png\"/> <jats:tex-math>$Ra_t \\sim Pr^{0.93}$</jats:tex-math> </jats:alternatives> </jats:inline-formula> in the low <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005500_inline15.png\"/> <jats:tex-math>$Pr$</jats:tex-math> </jats:alternatives> </jats:inline-formula> range, and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005500_inline16.png\"/> <jats:tex-math>$Ra_t \\sim Pr^{3.3}$</jats:tex-math> </jats:alternatives> </jats:inline-formula> in the high <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005500_inline17.png\"/> <jats:tex-math>$Pr$</jats:tex-math> </jats:alternatives> </jats:inline-formula> range. The scaling in the low <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005500_inline18.png\"/> <jats:tex-math>$Pr$</jats:tex-math> </jats:alternatives> </jats:inline-formula> range is consistent with the model of balance of energy dissipation time and plume travel time that we proposed in our previous study, while the scaling in the high <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005500_inline19.png\"/> <jats:tex-math>$Pr$</jats:tex-math> </jats:alternatives> </jats:inline-formula> range implies a new governing mechanism. For the first time, the scaling of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005500_inline20.png\"/> <jats:tex-math>$Re$</jats:tex-math> </jats:alternatives> </jats:inline-formula> on <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005500_inline21.png\"/> <jats:tex-math>$Ra$</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005500_inline22.png\"/> <jats:tex-math>$Pr$</jats:tex-math> </jats:alternatives> </jats:inline-formula> is acquired through full-field PIV velocity measurement, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005500_inline24.png\"/> <jats:tex-math>$Re \\sim Ra^{0.63}\\,Pr^{-0.87}$</jats:tex-math> </jats:alternatives> </jats:inline-formula>. We also propose that increasing horizontal velocity promotes the formation of the large-scale circulation (LSC), especially for the high <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005500_inline25.png\"/> <jats:tex-math>$Pr$</jats:tex-math> </jats:alternatives> </jats:inline-formula> case. Our proposal was verified by achieving LSC through introducing horizontal driving force <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005500_inline26.png\"/> <jats:tex-math>$Ra_H$</jats:tex-math> </jats:alternatives> </jats:inline-formula> by tilting the convection cell with a small angle.","PeriodicalId":15853,"journal":{"name":"Journal of Fluid Mechanics","volume":"14 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1017/jfm.2024.550","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

To date, a comprehensive understanding of the influence of the Prandtl number ( $Pr$ ) on flow topology in turbulent Rayleigh–Bénard convection (RBC) remains elusive. In this study, we present an experimental investigation into the evolution of flow topology in quasi-two-dimensional turbulent RBC with $7.0 \leq Pr \leq 244.2$ and $2.03\times 10^{8} \leq Ra \leq 2.81\times 10^{9}$ . Particle image velocimetry (PIV) measurements reveal the flow transitions from multiple-roll state to single-roll state with increasing $Ra$ , and the transition is hindered with increasing $Pr$ , i.e. the transitional Rayleigh number $Ra_t$ increases with $Pr$ . We mapped out a phase diagram on the flow topology change on $Ra$ and $Pr$ , and identified the scaling of $Ra_t$ on $Pr$ : $Ra_t \sim Pr^{0.93}$ in the low $Pr$ range, and $Ra_t \sim Pr^{3.3}$ in the high $Pr$ range. The scaling in the low $Pr$ range is consistent with the model of balance of energy dissipation time and plume travel time that we proposed in our previous study, while the scaling in the high $Pr$ range implies a new governing mechanism. For the first time, the scaling of $Re$ on $Ra$ and $Pr$ is acquired through full-field PIV velocity measurement, $Re \sim Ra^{0.63}\,Pr^{-0.87}$ . We also propose that increasing horizontal velocity promotes the formation of the large-scale circulation (LSC), especially for the high $Pr$ case. Our proposal was verified by achieving LSC through introducing horizontal driving force $Ra_H$ by tilting the convection cell with a small angle.
准二维湍流雷利-贝纳德对流中流动拓扑的普朗特数依赖性
迄今为止,关于普朗特数($Pr$)对湍流雷利-贝纳德对流(RBC)中流动拓扑的影响的全面理解仍未形成。在本研究中,我们对准二维湍流雷利-贝纳德对流(RBC)中的流动拓扑演变进行了实验研究,Pr \leq 244.2$和Ra \leq 10^{8} 的值分别为$7.0和$2.03。\leq Ra \leq 2.81 (乘以 10^{9}$ )。粒子图像测速仪(PIV)测量显示,随着 $Ra$ 的增加,流动从多辊态过渡到单辊态,并且随着 $Pr$ 的增加,过渡受阻,即过渡瑞利数 $Ra_t$ 随着 $Pr$ 的增加而增加。我们绘制了流动拓扑变化在 $Ra$ 和 $Pr$ 上的相图,并确定了 $Ra_t$ 在 $Pr$ 上的缩放:在低 $Pr$ 范围内为 $Ra_t \sim Pr^{0.93}$,而在高 $Pr$ 范围内为 $Ra_t \sim Pr^{3.3}$。低Pr$范围内的缩放与我们之前研究中提出的能量耗散时间和羽流移动时间的平衡模型是一致的,而高Pr$范围内的缩放则意味着一种新的调控机制。我们首次通过全场 PIV 速度测量获得了 $Re$ 对 $Ra$ 和 $Pr$ 的比例关系,即 $Re \sim Ra^{0.63}\,Pr^{-0.87}$ 。我们还提出,水平速度的增加会促进大尺度环流(LSC)的形成,尤其是在高 Pr$ 的情况下。通过小角度倾斜对流单元,引入水平驱动力$Ra_H$,实现大尺度环流,验证了我们的提议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.50
自引率
27.00%
发文量
945
审稿时长
5.1 months
期刊介绍: Journal of Fluid Mechanics is the leading international journal in the field and is essential reading for all those concerned with developments in fluid mechanics. It publishes authoritative articles covering theoretical, computational and experimental investigations of all aspects of the mechanics of fluids. Each issue contains papers on both the fundamental aspects of fluid mechanics, and their applications to other fields such as aeronautics, astrophysics, biology, chemical and mechanical engineering, hydraulics, meteorology, oceanography, geology, acoustics and combustion.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信