{"title":"Prandtl number dependence of flow topology in quasi-two-dimensional turbulent Rayleigh–Bénard convection","authors":"Ze-Hao Wang, Xin Chen, Ao Xu, Heng-Dong Xi","doi":"10.1017/jfm.2024.550","DOIUrl":null,"url":null,"abstract":"To date, a comprehensive understanding of the influence of the Prandtl number (<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005500_inline1.png\"/> <jats:tex-math>$Pr$</jats:tex-math> </jats:alternatives> </jats:inline-formula>) on flow topology in turbulent Rayleigh–Bénard convection (RBC) remains elusive. In this study, we present an experimental investigation into the evolution of flow topology in quasi-two-dimensional turbulent RBC with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005500_inline4.png\"/> <jats:tex-math>$7.0 \\leq Pr \\leq 244.2$</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005500_inline5.png\"/> <jats:tex-math>$2.03\\times 10^{8} \\leq Ra \\leq 2.81\\times 10^{9}$</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Particle image velocimetry (PIV) measurements reveal the flow transitions from multiple-roll state to single-roll state with increasing <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005500_inline6.png\"/> <jats:tex-math>$Ra$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, and the transition is hindered with increasing <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005500_inline7.png\"/> <jats:tex-math>$Pr$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, i.e. the transitional Rayleigh number <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005500_inline8.png\"/> <jats:tex-math>$Ra_t$</jats:tex-math> </jats:alternatives> </jats:inline-formula> increases with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005500_inline9.png\"/> <jats:tex-math>$Pr$</jats:tex-math> </jats:alternatives> </jats:inline-formula>. We mapped out a phase diagram on the flow topology change on <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005500_inline10.png\"/> <jats:tex-math>$Ra$</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005500_inline11.png\"/> <jats:tex-math>$Pr$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, and identified the scaling of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005500_inline12.png\"/> <jats:tex-math>$Ra_t$</jats:tex-math> </jats:alternatives> </jats:inline-formula> on <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005500_inline13.png\"/> <jats:tex-math>$Pr$</jats:tex-math> </jats:alternatives> </jats:inline-formula>: <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005500_inline14.png\"/> <jats:tex-math>$Ra_t \\sim Pr^{0.93}$</jats:tex-math> </jats:alternatives> </jats:inline-formula> in the low <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005500_inline15.png\"/> <jats:tex-math>$Pr$</jats:tex-math> </jats:alternatives> </jats:inline-formula> range, and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005500_inline16.png\"/> <jats:tex-math>$Ra_t \\sim Pr^{3.3}$</jats:tex-math> </jats:alternatives> </jats:inline-formula> in the high <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005500_inline17.png\"/> <jats:tex-math>$Pr$</jats:tex-math> </jats:alternatives> </jats:inline-formula> range. The scaling in the low <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005500_inline18.png\"/> <jats:tex-math>$Pr$</jats:tex-math> </jats:alternatives> </jats:inline-formula> range is consistent with the model of balance of energy dissipation time and plume travel time that we proposed in our previous study, while the scaling in the high <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005500_inline19.png\"/> <jats:tex-math>$Pr$</jats:tex-math> </jats:alternatives> </jats:inline-formula> range implies a new governing mechanism. For the first time, the scaling of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005500_inline20.png\"/> <jats:tex-math>$Re$</jats:tex-math> </jats:alternatives> </jats:inline-formula> on <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005500_inline21.png\"/> <jats:tex-math>$Ra$</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005500_inline22.png\"/> <jats:tex-math>$Pr$</jats:tex-math> </jats:alternatives> </jats:inline-formula> is acquired through full-field PIV velocity measurement, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005500_inline24.png\"/> <jats:tex-math>$Re \\sim Ra^{0.63}\\,Pr^{-0.87}$</jats:tex-math> </jats:alternatives> </jats:inline-formula>. We also propose that increasing horizontal velocity promotes the formation of the large-scale circulation (LSC), especially for the high <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005500_inline25.png\"/> <jats:tex-math>$Pr$</jats:tex-math> </jats:alternatives> </jats:inline-formula> case. Our proposal was verified by achieving LSC through introducing horizontal driving force <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005500_inline26.png\"/> <jats:tex-math>$Ra_H$</jats:tex-math> </jats:alternatives> </jats:inline-formula> by tilting the convection cell with a small angle.","PeriodicalId":15853,"journal":{"name":"Journal of Fluid Mechanics","volume":"14 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1017/jfm.2024.550","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
To date, a comprehensive understanding of the influence of the Prandtl number ($Pr$) on flow topology in turbulent Rayleigh–Bénard convection (RBC) remains elusive. In this study, we present an experimental investigation into the evolution of flow topology in quasi-two-dimensional turbulent RBC with $7.0 \leq Pr \leq 244.2$ and $2.03\times 10^{8} \leq Ra \leq 2.81\times 10^{9}$. Particle image velocimetry (PIV) measurements reveal the flow transitions from multiple-roll state to single-roll state with increasing $Ra$, and the transition is hindered with increasing $Pr$, i.e. the transitional Rayleigh number $Ra_t$ increases with $Pr$. We mapped out a phase diagram on the flow topology change on $Ra$ and $Pr$, and identified the scaling of $Ra_t$ on $Pr$: $Ra_t \sim Pr^{0.93}$ in the low $Pr$ range, and $Ra_t \sim Pr^{3.3}$ in the high $Pr$ range. The scaling in the low $Pr$ range is consistent with the model of balance of energy dissipation time and plume travel time that we proposed in our previous study, while the scaling in the high $Pr$ range implies a new governing mechanism. For the first time, the scaling of $Re$ on $Ra$ and $Pr$ is acquired through full-field PIV velocity measurement, $Re \sim Ra^{0.63}\,Pr^{-0.87}$. We also propose that increasing horizontal velocity promotes the formation of the large-scale circulation (LSC), especially for the high $Pr$ case. Our proposal was verified by achieving LSC through introducing horizontal driving force $Ra_H$ by tilting the convection cell with a small angle.
期刊介绍:
Journal of Fluid Mechanics is the leading international journal in the field and is essential reading for all those concerned with developments in fluid mechanics. It publishes authoritative articles covering theoretical, computational and experimental investigations of all aspects of the mechanics of fluids. Each issue contains papers on both the fundamental aspects of fluid mechanics, and their applications to other fields such as aeronautics, astrophysics, biology, chemical and mechanical engineering, hydraulics, meteorology, oceanography, geology, acoustics and combustion.