One-winged butterflies: mode selection for azimuthal magnetorotational instability by thermal convection

IF 3.6 2区 工程技术 Q1 MECHANICS
Ashish Mishra, George Mamatsashvili, Martin Seilmayer, Frank Stefani
{"title":"One-winged butterflies: mode selection for azimuthal magnetorotational instability by thermal convection","authors":"Ashish Mishra, George Mamatsashvili, Martin Seilmayer, Frank Stefani","doi":"10.1017/jfm.2024.517","DOIUrl":null,"url":null,"abstract":"The effects of thermal convection on turbulence in accretion discs, and particularly its interplay with the magnetorotational instability (MRI), are of significant astrophysical interest. Despite extensive theoretical and numerical studies, such an interplay has not been explored experimentally. We conduct linear analysis of the azimuthal version of MRI (AMRI) in the presence of thermal convection and compare the results with our experimental data published before. We show that the critical Hartmann number (<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005172_inline1.png\"/> <jats:tex-math>$Ha$</jats:tex-math> </jats:alternatives> </jats:inline-formula>) for the onset of AMRI is reduced by convection. Importantly, convection breaks symmetry between <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005172_inline2.png\"/> <jats:tex-math>$m = \\pm 1$</jats:tex-math> </jats:alternatives> </jats:inline-formula> instability modes (<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005172_inline3.png\"/> <jats:tex-math>$m$</jats:tex-math> </jats:alternatives> </jats:inline-formula> is the azimuthal wavenumber). This preference for one mode over the other makes the AMRI wave appear as a ‘one-winged butterfly’.","PeriodicalId":15853,"journal":{"name":"Journal of Fluid Mechanics","volume":"11 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1017/jfm.2024.517","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

The effects of thermal convection on turbulence in accretion discs, and particularly its interplay with the magnetorotational instability (MRI), are of significant astrophysical interest. Despite extensive theoretical and numerical studies, such an interplay has not been explored experimentally. We conduct linear analysis of the azimuthal version of MRI (AMRI) in the presence of thermal convection and compare the results with our experimental data published before. We show that the critical Hartmann number ( $Ha$ ) for the onset of AMRI is reduced by convection. Importantly, convection breaks symmetry between $m = \pm 1$ instability modes ( $m$ is the azimuthal wavenumber). This preference for one mode over the other makes the AMRI wave appear as a ‘one-winged butterfly’.
单翼蝴蝶:热对流方位磁定向不稳定性的模式选择
热对流对吸积盘湍流的影响,特别是它与磁导不稳定性(MRI)的相互作用,具有重大的天体物理学意义。尽管进行了大量的理论和数值研究,但这种相互作用尚未得到实验探索。我们对存在热对流情况下的方位磁不稳定性(AMRI)进行了线性分析,并将结果与之前公布的实验数据进行了对比。我们的研究表明,对流会降低 AMRI 发生的临界哈特曼数($Ha$)。重要的是,对流打破了 $m =\pm 1$ 不稳定模式($m$ 是方位角波数)之间的对称性。这种对一种模式的偏好使 AMRI 波看起来像一只 "单翼蝴蝶"。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.50
自引率
27.00%
发文量
945
审稿时长
5.1 months
期刊介绍: Journal of Fluid Mechanics is the leading international journal in the field and is essential reading for all those concerned with developments in fluid mechanics. It publishes authoritative articles covering theoretical, computational and experimental investigations of all aspects of the mechanics of fluids. Each issue contains papers on both the fundamental aspects of fluid mechanics, and their applications to other fields such as aeronautics, astrophysics, biology, chemical and mechanical engineering, hydraulics, meteorology, oceanography, geology, acoustics and combustion.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信