Ashish Mishra, George Mamatsashvili, Martin Seilmayer, Frank Stefani
{"title":"One-winged butterflies: mode selection for azimuthal magnetorotational instability by thermal convection","authors":"Ashish Mishra, George Mamatsashvili, Martin Seilmayer, Frank Stefani","doi":"10.1017/jfm.2024.517","DOIUrl":null,"url":null,"abstract":"The effects of thermal convection on turbulence in accretion discs, and particularly its interplay with the magnetorotational instability (MRI), are of significant astrophysical interest. Despite extensive theoretical and numerical studies, such an interplay has not been explored experimentally. We conduct linear analysis of the azimuthal version of MRI (AMRI) in the presence of thermal convection and compare the results with our experimental data published before. We show that the critical Hartmann number (<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005172_inline1.png\"/> <jats:tex-math>$Ha$</jats:tex-math> </jats:alternatives> </jats:inline-formula>) for the onset of AMRI is reduced by convection. Importantly, convection breaks symmetry between <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005172_inline2.png\"/> <jats:tex-math>$m = \\pm 1$</jats:tex-math> </jats:alternatives> </jats:inline-formula> instability modes (<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005172_inline3.png\"/> <jats:tex-math>$m$</jats:tex-math> </jats:alternatives> </jats:inline-formula> is the azimuthal wavenumber). This preference for one mode over the other makes the AMRI wave appear as a ‘one-winged butterfly’.","PeriodicalId":15853,"journal":{"name":"Journal of Fluid Mechanics","volume":"11 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1017/jfm.2024.517","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
The effects of thermal convection on turbulence in accretion discs, and particularly its interplay with the magnetorotational instability (MRI), are of significant astrophysical interest. Despite extensive theoretical and numerical studies, such an interplay has not been explored experimentally. We conduct linear analysis of the azimuthal version of MRI (AMRI) in the presence of thermal convection and compare the results with our experimental data published before. We show that the critical Hartmann number ($Ha$) for the onset of AMRI is reduced by convection. Importantly, convection breaks symmetry between $m = \pm 1$ instability modes ($m$ is the azimuthal wavenumber). This preference for one mode over the other makes the AMRI wave appear as a ‘one-winged butterfly’.
期刊介绍:
Journal of Fluid Mechanics is the leading international journal in the field and is essential reading for all those concerned with developments in fluid mechanics. It publishes authoritative articles covering theoretical, computational and experimental investigations of all aspects of the mechanics of fluids. Each issue contains papers on both the fundamental aspects of fluid mechanics, and their applications to other fields such as aeronautics, astrophysics, biology, chemical and mechanical engineering, hydraulics, meteorology, oceanography, geology, acoustics and combustion.