Obstacle arrangement can control flows through porous obstructions

IF 3.6 2区 工程技术 Q1 MECHANICS
Fei He, Hongwei An, Marco Ghisalberti, Scott Draper, Chengjiao Ren, Paul Branson, Liang Cheng
{"title":"Obstacle arrangement can control flows through porous obstructions","authors":"Fei He, Hongwei An, Marco Ghisalberti, Scott Draper, Chengjiao Ren, Paul Branson, Liang Cheng","doi":"10.1017/jfm.2024.510","DOIUrl":null,"url":null,"abstract":"Previous work suggests that the arrangement of elements in an obstruction may influence the bulk flow velocity through the obstruction, but the physical mechanisms for this influence are not yet clear. This is the motivation for this study, where direct numerical simulation is used to investigate flow through an array of cylinders at a resolution sufficient to observe interactions between wakes of individual elements. The arrangement is altered by varying the gap ratio <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S002211202400510X_inline2ab.png\"/> <jats:tex-math>$G/d$</jats:tex-math> </jats:alternatives> </jats:inline-formula> (1.2 – 18, <jats:italic>G</jats:italic> is the distance between two adjacent cylinders, <jats:italic>d</jats:italic> is the cylinder diameter), array-to-element diameter ratio <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S002211202400510X_inline2gf.png\"/> <jats:tex-math>$D/d$</jats:tex-math> </jats:alternatives> </jats:inline-formula> (3.6 – 200, <jats:italic>D</jats:italic> is the array diameter), and incident flow angle (<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S002211202400510X_inline2b.png\"/> <jats:tex-math>$0^{\\circ} - 30^{\\circ}$</jats:tex-math> </jats:alternatives> </jats:inline-formula>). Depending on the element arrangement, it is found that the average root-mean-square lift and drag coefficients can vary by an order of magnitude, whilst the average time-mean drag coefficient of individual cylinders (<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S002211202400510X_inline2c.png\"/> <jats:tex-math>$\\overline{C_{d}}$</jats:tex-math> </jats:alternatives> </jats:inline-formula>), and the bulk velocity are found to vary by up to <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S002211202400510X_inline2d.png\"/> <jats:tex-math>$50\\,\\%$</jats:tex-math> </jats:alternatives> </jats:inline-formula> and a factor of 2, respectively. These arrangement effects are a consequence of the variation in flow and drag characteristics of individual cylinders within the array. The arrangement effects become most critical in the intermediate range of flow blockage parameter <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S002211202400510X_inline2e.png\"/> <jats:tex-math>$\\mathit{\\Gamma_{D}^{\\prime}} = 0.5-1.5$</jats:tex-math> </jats:alternatives> </jats:inline-formula> (<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S002211202400510X_inline2eqew.png\"/> <jats:tex-math>$\\mathit{\\Gamma_{D}^{\\prime}}=\\overline{C_{d}}aD/(1-\\phi)$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:italic>a</jats:italic> is frontal element area per unit volume, and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S002211202400510X_inline2f.png\"/> <jats:tex-math>$\\phi$</jats:tex-math> </jats:alternatives> </jats:inline-formula> is solid volume fraction), due to the high variability in element-scale flow characteristics. Across the full range of arrangements modelled, it is confirmed that the bulk velocity is governed by flow blockage parameter but only if the drag coefficient incorporates arrangement effects. Using these results, this paper proposes a framework for describing and predicting flow through an array across a variety of arrangements.","PeriodicalId":15853,"journal":{"name":"Journal of Fluid Mechanics","volume":"175 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1017/jfm.2024.510","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

Previous work suggests that the arrangement of elements in an obstruction may influence the bulk flow velocity through the obstruction, but the physical mechanisms for this influence are not yet clear. This is the motivation for this study, where direct numerical simulation is used to investigate flow through an array of cylinders at a resolution sufficient to observe interactions between wakes of individual elements. The arrangement is altered by varying the gap ratio $G/d$ (1.2 – 18, G is the distance between two adjacent cylinders, d is the cylinder diameter), array-to-element diameter ratio $D/d$ (3.6 – 200, D is the array diameter), and incident flow angle ( $0^{\circ} - 30^{\circ}$ ). Depending on the element arrangement, it is found that the average root-mean-square lift and drag coefficients can vary by an order of magnitude, whilst the average time-mean drag coefficient of individual cylinders ( $\overline{C_{d}}$ ), and the bulk velocity are found to vary by up to $50\,\%$ and a factor of 2, respectively. These arrangement effects are a consequence of the variation in flow and drag characteristics of individual cylinders within the array. The arrangement effects become most critical in the intermediate range of flow blockage parameter $\mathit{\Gamma_{D}^{\prime}} = 0.5-1.5$ ( $\mathit{\Gamma_{D}^{\prime}}=\overline{C_{d}}aD/(1-\phi)$ , where a is frontal element area per unit volume, and $\phi$ is solid volume fraction), due to the high variability in element-scale flow characteristics. Across the full range of arrangements modelled, it is confirmed that the bulk velocity is governed by flow blockage parameter but only if the drag coefficient incorporates arrangement effects. Using these results, this paper proposes a framework for describing and predicting flow through an array across a variety of arrangements.
障碍物布置可控制通过多孔障碍物的水流
以往的研究表明,障碍物中元件的排列可能会影响通过障碍物的整体流速,但这种影响的物理机制尚不清楚。因此,本研究采用直接数值模拟来研究流经圆柱体阵列的情况,其分辨率足以观察到单个元件之间的相互作用。通过改变间隙比 $G/d$(1.2 - 18,G 为两个相邻圆柱体之间的距离,d 为圆柱体直径)、阵列与元件直径比 $D/d$(3.6 - 200,D 为阵列直径)和入射流角($0^{\circ} - 30^{\circ}$ )来改变排列方式。根据不同的元素排列,平均均方根升力和阻力系数可能会有一个数量级的变化,而单个圆柱体的平均时间均值阻力系数($\overline{C_{d}}$)和体积速度的变化分别高达 $50\,\%$ 和 2 倍。这些排列效应是阵列中单个圆柱体的流动和阻力特性变化的结果。在流动阻塞参数 $\mathit\{Gamma_{D}^{\prime}} = 0.5-1.5$ ($\mathit\{Gamma_{D}^{\prime}}=\overline{C_{d}}aD/(1-\phi)$,其中 a 是单位体积的正面元件面积,$\phi$ 是固体体积分数)的中间范围内,由于元件尺度流动特性的高度可变性,排列效应变得最为关键。在所模拟的所有布置范围内,可以确认体积速度受流动阻塞参数的支配,但只有在阻力系数包含布置效应的情况下才受其支配。利用这些结果,本文提出了一个框架,用于描述和预测通过各种排列阵列的流动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.50
自引率
27.00%
发文量
945
审稿时长
5.1 months
期刊介绍: Journal of Fluid Mechanics is the leading international journal in the field and is essential reading for all those concerned with developments in fluid mechanics. It publishes authoritative articles covering theoretical, computational and experimental investigations of all aspects of the mechanics of fluids. Each issue contains papers on both the fundamental aspects of fluid mechanics, and their applications to other fields such as aeronautics, astrophysics, biology, chemical and mechanical engineering, hydraulics, meteorology, oceanography, geology, acoustics and combustion.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信