Anion exchange membrane water electrolysis over superparamagnetic ferrites†

IF 3.2 Q2 CHEMISTRY, PHYSICAL
Energy advances Pub Date : 2024-08-30 DOI:10.1039/D4YA00170B
Tiago Fernandes, Ramsundar Rani Mohan, Laura Donk, Wei Chen, Chiara Biz, Mauro Fianchini, Saeed Kamali, Siavash Mohammad Alizadeh, Anna Kitayev, Aviv Ashdot, Miles Page, Laura M. Salonen, Sebastian Kopp, Ervin Tal Gutelmacher, José Gracia, Marta Costa Figueiredo and Yury V. Kolen’ko
{"title":"Anion exchange membrane water electrolysis over superparamagnetic ferrites†","authors":"Tiago Fernandes, Ramsundar Rani Mohan, Laura Donk, Wei Chen, Chiara Biz, Mauro Fianchini, Saeed Kamali, Siavash Mohammad Alizadeh, Anna Kitayev, Aviv Ashdot, Miles Page, Laura M. Salonen, Sebastian Kopp, Ervin Tal Gutelmacher, José Gracia, Marta Costa Figueiredo and Yury V. Kolen’ko","doi":"10.1039/D4YA00170B","DOIUrl":null,"url":null,"abstract":"<p >The oxygen evolution reaction (OER) is usually the bottleneck in water electrolysis due to its sluggish kinetics, resulting in increased costs in the production of green hydrogen. Therefore, there is a need for more efficient, stable, and ideally, critical-raw-material-free catalysts. To this end, we have synthesized nanosized spinel ferrites CoFe<small><sub>2</sub></small>O<small><sub>4</sub></small>, NiFe<small><sub>2</sub></small>O<small><sub>4</sub></small>, and ZnFe<small><sub>2</sub></small>O<small><sub>4</sub></small>, and a high-entropy spinel ferrite Zn<small><sub>0.2</sub></small>Mn<small><sub>0.2</sub></small>Ni<small><sub>0.2</sub></small>Co<small><sub>0.2</sub></small>Fe<small><sub>2.2</sub></small>O<small><sub>4</sub></small> through a simple coprecipitation reaction in an automated reactor on a gram scale. The powder X-ray diffraction and transmission electron microscopy studies revealed crystallite sizes of 20–35 nm. Insight into the oxidation states and cation distribution in the mixed spinel systems was gained through X-ray photoelectron and Mössbauer spectroscopy studies. The activity of all spinel ferrites was tested for the OER through half-cell laboratory measurements and full-cell anion exchange membrane electrolysis (AEMEL), where Zn<small><sub>0.2</sub></small>Mn<small><sub>0.2</sub></small>Ni<small><sub>0.2</sub></small>Co<small><sub>0.2</sub></small>Fe<small><sub>2.2</sub></small>O<small><sub>4</sub></small> showed the lowest overpotential of 432 mV at a current density of 10 mA cm<small><sup>−2</sup></small>. All the synthesized ferrites demonstrated good stability up to 20 h, with NiFe<small><sub>2</sub></small>O<small><sub>4</sub></small> being the most active in high current density experiments up to 2 A cm<small><sup>−2</sup></small>. In addition, studies on the magnetic properties at room temperature revealed a largely superparamagnetic response of the prepared materials, indicating that quantum spin-exchange interactions facilitate oxygen electrochemistry. Computational calculations shed light on the superior catalytic activities of NiFe<small><sub>2</sub></small>O<small><sub>4</sub></small> and Zn<small><sub>0.2</sub></small>Mn<small><sub>0.2</sub></small>Ni<small><sub>0.2</sub></small>Co<small><sub>0.2</sub></small>Fe<small><sub>2.2</sub></small>O<small><sub>4</sub></small>, the two strongly correlated oxides that exhibit the highest magnetization and the smallest band gaps, corroborating the recent principles determining the activity of magnetic oxides in electron transfer reactions.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":" 10","pages":" 2575-2586"},"PeriodicalIF":3.2000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ya/d4ya00170b?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ya/d4ya00170b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The oxygen evolution reaction (OER) is usually the bottleneck in water electrolysis due to its sluggish kinetics, resulting in increased costs in the production of green hydrogen. Therefore, there is a need for more efficient, stable, and ideally, critical-raw-material-free catalysts. To this end, we have synthesized nanosized spinel ferrites CoFe2O4, NiFe2O4, and ZnFe2O4, and a high-entropy spinel ferrite Zn0.2Mn0.2Ni0.2Co0.2Fe2.2O4 through a simple coprecipitation reaction in an automated reactor on a gram scale. The powder X-ray diffraction and transmission electron microscopy studies revealed crystallite sizes of 20–35 nm. Insight into the oxidation states and cation distribution in the mixed spinel systems was gained through X-ray photoelectron and Mössbauer spectroscopy studies. The activity of all spinel ferrites was tested for the OER through half-cell laboratory measurements and full-cell anion exchange membrane electrolysis (AEMEL), where Zn0.2Mn0.2Ni0.2Co0.2Fe2.2O4 showed the lowest overpotential of 432 mV at a current density of 10 mA cm−2. All the synthesized ferrites demonstrated good stability up to 20 h, with NiFe2O4 being the most active in high current density experiments up to 2 A cm−2. In addition, studies on the magnetic properties at room temperature revealed a largely superparamagnetic response of the prepared materials, indicating that quantum spin-exchange interactions facilitate oxygen electrochemistry. Computational calculations shed light on the superior catalytic activities of NiFe2O4 and Zn0.2Mn0.2Ni0.2Co0.2Fe2.2O4, the two strongly correlated oxides that exhibit the highest magnetization and the smallest band gaps, corroborating the recent principles determining the activity of magnetic oxides in electron transfer reactions.

Abstract Image

Abstract Image

超顺磁性铁氧体上的阴离子交换膜电解水
氧进化反应(OER)通常是水电解过程中的瓶颈,因为其动力学反应缓慢,导致生产绿色氢气的成本增加。因此,需要更高效、更稳定、更理想的无临界原料催化剂。为此,我们在克级自动反应器中通过简单的共沉淀反应合成了纳米级尖晶铁氧体 CoFe2O4、NiFe2O4 和 ZnFe2O4 以及高熵尖晶铁氧体 Zn0.2Mn0.2Ni0.2Co0.2Fe2.2O4。粉末 X 射线衍射和透射电子显微镜研究显示结晶尺寸为 20-35 纳米。通过 X 射线光电子学和莫斯鲍尔光谱研究,深入了解了混合尖晶石体系中的氧化态和阳离子分布。通过半电池实验室测量和全电池阴离子交换膜电解 (AEMEL) 测试了所有尖晶石铁氧体的 OER 活性,其中 Zn0.2Mn0.2Ni0.2Co0.2Fe2.2O4 在电流密度为 10 mA cm-2 时的过电位最低,为 432 mV。所有合成的铁氧体在 20 小时内都表现出良好的稳定性,其中 NiFe2O4 在高达 2 A cm-2 的高电流密度实验中最为活跃。此外,对室温下磁性能的研究表明,所制备的材料在很大程度上具有超顺磁性,这表明量子自旋交换相互作用促进了氧的电化学作用。计算阐明了 NiFe2O4 和 Zn0.2Mn0.2Ni0.2Co0.2Fe2.2O4(这两种强相关氧化物表现出最高的磁化率和最小的带隙)的卓越催化活性,证实了最近确定磁性氧化物在电子转移反应中的活性的原理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信