Quantitative local state of charge mapping by operando electrochemical fluorescence microscopy in porous electrodes†

IF 3.2 Q2 CHEMISTRY, PHYSICAL
Energy advances Pub Date : 2024-08-28 DOI:10.1039/D4YA00362D
Anton M. Graf, Thomas Cochard, Kiana Amini, Michael S. Emanuel, Shmuel M. Rubinstein and Michael J. Aziz
{"title":"Quantitative local state of charge mapping by operando electrochemical fluorescence microscopy in porous electrodes†","authors":"Anton M. Graf, Thomas Cochard, Kiana Amini, Michael S. Emanuel, Shmuel M. Rubinstein and Michael J. Aziz","doi":"10.1039/D4YA00362D","DOIUrl":null,"url":null,"abstract":"<p >We introduce <em>operando</em> quantitative electrochemical fluorescence state of charge mapping (QEFSM), a non-invasive technique to study operating electrochemical systems along with a new design of optically transparent microfluidic redox flow cells compatible with the most demanding optical requirements. QEFSM allows quantitative mappings of the concentration of a particular oxidation state of a redox-active species within a porous electrode during its operation. In this study, we used confocal microscopy to map the fluorescence signal of the reduced form of 2,7-anthraquinone disulfonate (AQDS) in a set of multistep-chronoamperometry experiments. Calibrating these images and incorporating an analytical model of quinhydrone heterodimer formation with no free parameters, and accounting for the emission of each species involved, we determined the local molecular concentration and the state of charge (SOC) fields within a commercial porous electrode during operation. With this method, electrochemical conversion and species advection, reaction and diffusion can be monitored at heretofore unprecedented transverse and axial resolution (1 μm and 25 μm, respectively) at frame rates of 0.5 Hz, opening new routes to understanding local electrochemical processes in porous electrodes. We observed pore-scale SOC inhomogeneities appearing when the fraction of electroactive species converted in a single pass through the electrode becomes large.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":" 10","pages":" 2468-2478"},"PeriodicalIF":3.2000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ya/d4ya00362d?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ya/d4ya00362d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce operando quantitative electrochemical fluorescence state of charge mapping (QEFSM), a non-invasive technique to study operating electrochemical systems along with a new design of optically transparent microfluidic redox flow cells compatible with the most demanding optical requirements. QEFSM allows quantitative mappings of the concentration of a particular oxidation state of a redox-active species within a porous electrode during its operation. In this study, we used confocal microscopy to map the fluorescence signal of the reduced form of 2,7-anthraquinone disulfonate (AQDS) in a set of multistep-chronoamperometry experiments. Calibrating these images and incorporating an analytical model of quinhydrone heterodimer formation with no free parameters, and accounting for the emission of each species involved, we determined the local molecular concentration and the state of charge (SOC) fields within a commercial porous electrode during operation. With this method, electrochemical conversion and species advection, reaction and diffusion can be monitored at heretofore unprecedented transverse and axial resolution (1 μm and 25 μm, respectively) at frame rates of 0.5 Hz, opening new routes to understanding local electrochemical processes in porous electrodes. We observed pore-scale SOC inhomogeneities appearing when the fraction of electroactive species converted in a single pass through the electrode becomes large.

Abstract Image

Abstract Image

通过多孔电极中的操作电化学荧光显微镜绘制定量局部电荷状态图
我们介绍了操作定量电化学荧光电荷态图谱(QEFSM),这是一种研究运行中的电化学系统的非侵入性技术,同时还介绍了一种新设计的光学透明微流控氧化还原流动池,可满足最苛刻的光学要求。QEFSM 可以定量绘制多孔电极运行过程中氧化还原活性物种特定氧化态的浓度。在这项研究中,我们使用共聚焦显微镜绘制了一组多步骤-冲量测定法实验中 2,7-蒽醌二磺酸盐(AQDS)还原形式的荧光信号图。通过对这些图像进行校准,结合无自由参数的醌异二聚体形成分析模型,并考虑到每个参与物种的发射,我们确定了一个商用多孔电极在运行过程中的局部分子浓度和电荷状态(SOC)场。利用这种方法,可以以前所未有的横向和轴向分辨率(分别为 1 μm 和 25 μm)和 0.5 Hz 的帧速率监测电化学转换和物种平流、反应和扩散,为了解多孔电极中的局部电化学过程开辟了新的途径。我们观察到,当单次通过电极时转化的电活性物质的比例变大时,就会出现孔隙尺度的 SOC 不均匀性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信