Li Cao, Maocai Wang, Massimiliano Vasile, Guangming Dai
{"title":"Multi agent collaborative search algorithm with adaptive weights","authors":"Li Cao, Maocai Wang, Massimiliano Vasile, Guangming Dai","doi":"10.1111/exsy.13709","DOIUrl":null,"url":null,"abstract":"<p>This paper presents a new version of Multi Agent Collaborative Search (MACS) with Adaptive Weights (named MACS-AW). MACS is a multi-agent memetic scheme for multi-objective optimization originally developed to mix local and population-based search. MACS was proven to perform well on a number of test cases but had three limitations: (i) the amount of computational resources allocated to each agent was not proportional to the difficulty of the sub-problem the agent had to solve; (ii) the population-based search (called social actions in the following) was using only one differential evolution (DE) operator with fixed parameters; (iii) the descent directions were not adapted during convergence, leading to a loss of diversity. In this paper, we propose an improved version of MACS, that implements: (i) a new utility function to better manage computational resources; (ii) new social actions with multiple adaptive DE operators; (iii) an automatic adaptation of the descent directions with an innovative trigger to initiate adaptation. First, MACS-AW is compared against some state-of-art algorithms and its predecessor MACS2.1 on some standard benchmarks. Then, MACS-AW is applied to the solution of two real-life optimization problems and compared against MACS2.1. It will be shown that MACS-AW produces competitive results on most test cases analysed in this paper. On the standard benchmark test set, MACS-AW outperforms all other algorithms in 11 out of 30 cases and comes second in other 8 cases. On the two real engineering test set, MACS-AW and its predecessor obtain same results.</p>","PeriodicalId":51053,"journal":{"name":"Expert Systems","volume":"41 12","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/exsy.13709","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a new version of Multi Agent Collaborative Search (MACS) with Adaptive Weights (named MACS-AW). MACS is a multi-agent memetic scheme for multi-objective optimization originally developed to mix local and population-based search. MACS was proven to perform well on a number of test cases but had three limitations: (i) the amount of computational resources allocated to each agent was not proportional to the difficulty of the sub-problem the agent had to solve; (ii) the population-based search (called social actions in the following) was using only one differential evolution (DE) operator with fixed parameters; (iii) the descent directions were not adapted during convergence, leading to a loss of diversity. In this paper, we propose an improved version of MACS, that implements: (i) a new utility function to better manage computational resources; (ii) new social actions with multiple adaptive DE operators; (iii) an automatic adaptation of the descent directions with an innovative trigger to initiate adaptation. First, MACS-AW is compared against some state-of-art algorithms and its predecessor MACS2.1 on some standard benchmarks. Then, MACS-AW is applied to the solution of two real-life optimization problems and compared against MACS2.1. It will be shown that MACS-AW produces competitive results on most test cases analysed in this paper. On the standard benchmark test set, MACS-AW outperforms all other algorithms in 11 out of 30 cases and comes second in other 8 cases. On the two real engineering test set, MACS-AW and its predecessor obtain same results.
期刊介绍:
Expert Systems: The Journal of Knowledge Engineering publishes papers dealing with all aspects of knowledge engineering, including individual methods and techniques in knowledge acquisition and representation, and their application in the construction of systems – including expert systems – based thereon. Detailed scientific evaluation is an essential part of any paper.
As well as traditional application areas, such as Software and Requirements Engineering, Human-Computer Interaction, and Artificial Intelligence, we are aiming at the new and growing markets for these technologies, such as Business, Economy, Market Research, and Medical and Health Care. The shift towards this new focus will be marked by a series of special issues covering hot and emergent topics.