{"title":"Optimizing task allocation with temporal‐spatial privacy protection in mobile crowdsensing","authors":"Yuping Liu, Honglong Chen, Xiaolong Liu, Wentao Wei, Huansheng Xue, Osama Alfarraj, Zafer Almakhadmeh","doi":"10.1111/exsy.13717","DOIUrl":null,"url":null,"abstract":"Mobile Crowdsensing (MCS) is considered to be a key emerging example of a smart city, which combines the wisdom of dynamic people with mobile devices to provide distributed, ubiquitous services and applications. In MCS, each worker tends to complete as many tasks as possible within the limited idle time to obtain higher income, while completing a task may require the worker to move to the specific location of the task and perform continuous sensing. Thus the time and location information of each worker is necessary for an efficient task allocation mechanism. However, submitting the time and location information of the workers to the system raises several privacy concerns, making it significant to protect both the temporal and spatial privacy of workers in MCS. In this article, we propose the Task Allocation with Temporal‐Spatial Privacy Protection (TASP) problem, aiming to maximize the total worker income to further improve the workers' motivation in executing tasks and the platform's utility, which is proved to be NP‐hard. We adopt differential privacy technology to introduce Laplace noise into the location and time information of workers, after which we propose the Improved Genetic Algorithm (SPGA) and the Clone‐Enhanced Genetic Algorithm (SPCGA), to solve the TASP problem. Experimental results on two real‐world datasets verify the effectiveness of the proposed SPGA and SPCGA with the required personalized privacy protection.","PeriodicalId":51053,"journal":{"name":"Expert Systems","volume":"10 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1111/exsy.13717","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Mobile Crowdsensing (MCS) is considered to be a key emerging example of a smart city, which combines the wisdom of dynamic people with mobile devices to provide distributed, ubiquitous services and applications. In MCS, each worker tends to complete as many tasks as possible within the limited idle time to obtain higher income, while completing a task may require the worker to move to the specific location of the task and perform continuous sensing. Thus the time and location information of each worker is necessary for an efficient task allocation mechanism. However, submitting the time and location information of the workers to the system raises several privacy concerns, making it significant to protect both the temporal and spatial privacy of workers in MCS. In this article, we propose the Task Allocation with Temporal‐Spatial Privacy Protection (TASP) problem, aiming to maximize the total worker income to further improve the workers' motivation in executing tasks and the platform's utility, which is proved to be NP‐hard. We adopt differential privacy technology to introduce Laplace noise into the location and time information of workers, after which we propose the Improved Genetic Algorithm (SPGA) and the Clone‐Enhanced Genetic Algorithm (SPCGA), to solve the TASP problem. Experimental results on two real‐world datasets verify the effectiveness of the proposed SPGA and SPCGA with the required personalized privacy protection.
期刊介绍:
Expert Systems: The Journal of Knowledge Engineering publishes papers dealing with all aspects of knowledge engineering, including individual methods and techniques in knowledge acquisition and representation, and their application in the construction of systems – including expert systems – based thereon. Detailed scientific evaluation is an essential part of any paper.
As well as traditional application areas, such as Software and Requirements Engineering, Human-Computer Interaction, and Artificial Intelligence, we are aiming at the new and growing markets for these technologies, such as Business, Economy, Market Research, and Medical and Health Care. The shift towards this new focus will be marked by a series of special issues covering hot and emergent topics.