{"title":"STP‐CNN: Selection of transfer parameters in convolutional neural networks","authors":"Otmane Mallouk, Nour‐Eddine Joudar, Mohamed Ettaouil","doi":"10.1111/exsy.13728","DOIUrl":null,"url":null,"abstract":"Nowadays, transfer learning has shown promising results in many applications. However, most deep transfer learning methods such as <jats:italic>parameter sharing</jats:italic> and <jats:italic>fine‐tuning</jats:italic> are still suffering from the lack of parameters transmission strategy. In this paper, we propose a new optimization model for parameter‐based transfer learning in convolutional neural networks named STP‐CNN. Indeed, we propose a Lasso transfer model supported by a regularization term that controls transferability. Moreover, we opt for the proximal gradient descent method to solve the proposed model. The suggested technique allows, under certain conditions, to control exactly which parameters, in each convolutional layer of the source network, which will be used directly or adjusted in the target network. Several experiments prove the performance of our model in locating the transferable parameters as well as improving the data classification.","PeriodicalId":51053,"journal":{"name":"Expert Systems","volume":"14 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1111/exsy.13728","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Nowadays, transfer learning has shown promising results in many applications. However, most deep transfer learning methods such as parameter sharing and fine‐tuning are still suffering from the lack of parameters transmission strategy. In this paper, we propose a new optimization model for parameter‐based transfer learning in convolutional neural networks named STP‐CNN. Indeed, we propose a Lasso transfer model supported by a regularization term that controls transferability. Moreover, we opt for the proximal gradient descent method to solve the proposed model. The suggested technique allows, under certain conditions, to control exactly which parameters, in each convolutional layer of the source network, which will be used directly or adjusted in the target network. Several experiments prove the performance of our model in locating the transferable parameters as well as improving the data classification.
期刊介绍:
Expert Systems: The Journal of Knowledge Engineering publishes papers dealing with all aspects of knowledge engineering, including individual methods and techniques in knowledge acquisition and representation, and their application in the construction of systems – including expert systems – based thereon. Detailed scientific evaluation is an essential part of any paper.
As well as traditional application areas, such as Software and Requirements Engineering, Human-Computer Interaction, and Artificial Intelligence, we are aiming at the new and growing markets for these technologies, such as Business, Economy, Market Research, and Medical and Health Care. The shift towards this new focus will be marked by a series of special issues covering hot and emergent topics.