Jing Zhang, Hui Tang, Lijun Zuo, Hao Liu, Chang Liu, Zixiao Li, Jing Jing, Yongjun Wang, Tao Liu
{"title":"Identification of a cognitive network with effective connectivity to post-stroke cognitive impairment","authors":"Jing Zhang, Hui Tang, Lijun Zuo, Hao Liu, Chang Liu, Zixiao Li, Jing Jing, Yongjun Wang, Tao Liu","doi":"10.1007/s11571-024-10139-4","DOIUrl":null,"url":null,"abstract":"<p>Altered connectivity within complex functional networks has been observed in individuals with post-stroke cognitive impairment (PSCI) and during cognitive tasks. This study aimed to identify a cognitive function network that is responsive to cognitive changes during cognitive tasks and also sensitive to PSCI. To explore the network, we analyzed resting-state fMRI data from 20 PSCI patients and task-state fMRI data from 100 unrelated healthy young adults using functional connectivity analysis. We further employed spectral dynamic causal modeling to examine the effective connectivity among the pivotal regions within the network. Our findings revealed a common cognitive network that encompassed the hub regions 231 in the Subcortical network (SC), 70, 199, 242 in the Frontoparietal network (FP), 214 in the Visual II network, and 253 in the Cerebellum network (CBL). These hubs’ effective connectivity, which showed reliable but slight changes during different cognitive tasks, exhibited notable alterations when comparing post-stroke cognitive impairment and improvement statuses. Decreased coupling strengths were observed in effective connections to CBL253 and from SC231 and FP70 in the improvement status. Increased connections to SC231 and FP70, from CBL253 and FP242, as well as from FP199 and FP242 to FP242 were observed in this status. These alterations exhibited a high sensitivity to signs of recovery, ranging from 80 to 100%. The effective connectivity pattern in both post-stroke cognitive statuses also reflected the influence of the MoCA score. This research succeeded in identifying a cognitive network with sensitive effective connectivity to cognitive changes after stroke, presenting a potential neuroimaging biomarker for forthcoming interventional studies.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-024-10139-4","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Altered connectivity within complex functional networks has been observed in individuals with post-stroke cognitive impairment (PSCI) and during cognitive tasks. This study aimed to identify a cognitive function network that is responsive to cognitive changes during cognitive tasks and also sensitive to PSCI. To explore the network, we analyzed resting-state fMRI data from 20 PSCI patients and task-state fMRI data from 100 unrelated healthy young adults using functional connectivity analysis. We further employed spectral dynamic causal modeling to examine the effective connectivity among the pivotal regions within the network. Our findings revealed a common cognitive network that encompassed the hub regions 231 in the Subcortical network (SC), 70, 199, 242 in the Frontoparietal network (FP), 214 in the Visual II network, and 253 in the Cerebellum network (CBL). These hubs’ effective connectivity, which showed reliable but slight changes during different cognitive tasks, exhibited notable alterations when comparing post-stroke cognitive impairment and improvement statuses. Decreased coupling strengths were observed in effective connections to CBL253 and from SC231 and FP70 in the improvement status. Increased connections to SC231 and FP70, from CBL253 and FP242, as well as from FP199 and FP242 to FP242 were observed in this status. These alterations exhibited a high sensitivity to signs of recovery, ranging from 80 to 100%. The effective connectivity pattern in both post-stroke cognitive statuses also reflected the influence of the MoCA score. This research succeeded in identifying a cognitive network with sensitive effective connectivity to cognitive changes after stroke, presenting a potential neuroimaging biomarker for forthcoming interventional studies.
期刊介绍:
Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models.
The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome.
The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged.
1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics.
2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages.
3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.