Inequalities for the Differences of Averages on H1 Spaces

IF 0.5 Q3 MATHEMATICS
S. Demir
{"title":"Inequalities for the Differences of Averages on H1 Spaces","authors":"S. Demir","doi":"10.3103/s1066369x24700403","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Let <span>\\(({{x}_{n}})\\)</span> be a sequence and <span>\\(\\{ {{c}_{k}}\\} \\in {{\\ell }^{\\infty }}(\\mathbb{Z})\\)</span> such that <span>\\({{\\left\\| {{{c}_{k}}} \\right\\|}_{{{{\\ell }^{\\infty }}}}} \\leqslant 1\\)</span>. Define <span>\\(\\mathcal{G}({{x}_{n}}) = \\mathop {\\sup }\\limits_j \\left| {\\sum\\limits_{k = 0}^j \\,{{c}_{k}}\\left( {{{x}_{{{{n}_{{k + 1}}}}}} - {{x}_{{{{n}_{k}}}}}} \\right)} \\right|.\\)</span> Let now <span>\\((X,\\beta ,\\mu ,\\tau )\\)</span> be an ergodic, measure preserving dynamical system with <span>\\((X,\\beta ,\\mu )\\)</span> a totally <span>\\(\\sigma \\)</span>-finite measure space. Suppose that the sequence <span>\\(({{n}_{k}})\\)</span> is lacunary. Then we prove the following results: 1. Define <span>\\({{\\phi }_{n}}(x) = \\frac{1}{n}{{\\chi }_{{[0,n]}}}(x)\\)</span> on <span>\\(\\mathbb{R}\\)</span>. Then there exists a constant <span>\\(C &gt; 0\\)</span> such that <span>\\({{\\left\\| {\\mathcal{G}({{\\phi }_{n}} * f)} \\right\\|}_{{{{L}^{1}}(\\mathbb{R})}}} \\leqslant C{{\\left\\| f \\right\\|}_{{{{H}^{1}}(\\mathbb{R})}}},\\)</span> for all <span>\\(f \\in {{H}^{1}}(\\mathbb{R})\\)</span>. 2. Let <span>\\({{A}_{n}}f(x) = \\frac{1}{n}\\sum\\limits_{k = 0}^{n - 1} \\,f({{\\tau }^{k}}x),\\)</span> be the usual ergodic averages in ergodic theory. Then <span>\\({{\\left\\| {\\mathcal{G}({{A}_{n}}f)} \\right\\|}_{{{{L}^{1}}(X)}}} \\leqslant C{{\\left\\| f \\right\\|}_{{{{H}^{1}}(X)}}},\\)</span> for all <span>\\(f \\in {{H}^{1}}(X)\\)</span>. 3. If <span>\\({{[f(x)\\log (x)]}^{ + }}\\)</span> is integrable, then <span>\\(\\mathcal{G}({{A}_{n}}f)\\)</span> is integrable.</p>","PeriodicalId":46110,"journal":{"name":"Russian Mathematics","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3103/s1066369x24700403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let \(({{x}_{n}})\) be a sequence and \(\{ {{c}_{k}}\} \in {{\ell }^{\infty }}(\mathbb{Z})\) such that \({{\left\| {{{c}_{k}}} \right\|}_{{{{\ell }^{\infty }}}}} \leqslant 1\). Define \(\mathcal{G}({{x}_{n}}) = \mathop {\sup }\limits_j \left| {\sum\limits_{k = 0}^j \,{{c}_{k}}\left( {{{x}_{{{{n}_{{k + 1}}}}}} - {{x}_{{{{n}_{k}}}}}} \right)} \right|.\) Let now \((X,\beta ,\mu ,\tau )\) be an ergodic, measure preserving dynamical system with \((X,\beta ,\mu )\) a totally \(\sigma \)-finite measure space. Suppose that the sequence \(({{n}_{k}})\) is lacunary. Then we prove the following results: 1. Define \({{\phi }_{n}}(x) = \frac{1}{n}{{\chi }_{{[0,n]}}}(x)\) on \(\mathbb{R}\). Then there exists a constant \(C > 0\) such that \({{\left\| {\mathcal{G}({{\phi }_{n}} * f)} \right\|}_{{{{L}^{1}}(\mathbb{R})}}} \leqslant C{{\left\| f \right\|}_{{{{H}^{1}}(\mathbb{R})}}},\) for all \(f \in {{H}^{1}}(\mathbb{R})\). 2. Let \({{A}_{n}}f(x) = \frac{1}{n}\sum\limits_{k = 0}^{n - 1} \,f({{\tau }^{k}}x),\) be the usual ergodic averages in ergodic theory. Then \({{\left\| {\mathcal{G}({{A}_{n}}f)} \right\|}_{{{{L}^{1}}(X)}}} \leqslant C{{\left\| f \right\|}_{{{{H}^{1}}(X)}}},\) for all \(f \in {{H}^{1}}(X)\). 3. If \({{[f(x)\log (x)]}^{ + }}\) is integrable, then \(\mathcal{G}({{A}_{n}}f)\) is integrable.

H1 空间上的均值差不等式
\in {{ell }^{\infty }}(\mathbb{Z})\) such that \({{\left\| {{c}_{k}}} \right\|}_{{{{\ell }^{\infty }}}}} \leqslant 1\).定义 \(\mathcal{G}({{x}_{n}}) = \mathop {\sup }\limits_j \left| {\sum\limits_{k = 0}^j \,{{c}_{k}}}left({{x}_{{{{n}_{k + 1}}}}}} - {{x}_{{{{n}_{k}}}}}} \right)} \right|.\)现在让 \((X,\beta ,\mu ,\tau )\) 是一个遍历的、度量保持的动力系统,而 \((X,\beta ,\mu )\) 是一个完全\(\sigma \)-无限的度量空间。假设序列 \(({{n}_{k}})\) 是有隙的。那么我们证明以下结果:1.在 \(\mathbb{R}\) 上定义 \({{\phi }_{n}}(x) = \frac{1}{n}{{\chi }_{{[0,n]}}}(x)\) 。然后存在一个常数 \(C > 0\) 使得 \({{\left\| {\mathcal{G}({{\phi }_{n}} * f)} \right\|}_{{{{L}}^{1}}(\mathbb{R})}}}\leqslant C{{left\| f \right\|}_{{{{H}^{1}}(\mathbb{R})}},\) for all \(f \in {{H}^{1}}(\mathbb{R})\).2.让 \({{A}_{n}}f(x) = \frac{1}{n}\sum\limits_{k = 0}^{n - 1}.\f({{\tau }^{k}}x),\)是遍历理论中通常的遍历平均数。Then \({{left\| {\mathcal{G}({{A}_{n}}f)} \right\|}_{{{{L}^{1}}(X)}}}\leqslant C{{left\| f \right\|}_{{{{H}^{1}}(X)}},\}) for all \(f \in {{H}^{1}}(X)\).3.如果 \({{[f(x)\log (x)]}^{ + }}\) 是可积分的,那么 \(\mathcal{G}({{A}_{n}}f)\) 就是可积分的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Russian Mathematics
Russian Mathematics MATHEMATICS-
CiteScore
0.90
自引率
25.00%
发文量
0
期刊介绍: Russian Mathematics  is a peer reviewed periodical that encompasses the most significant research in both pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信