Kendra M Dillon,Dayanara B Lohr,Alyssa G Novak,Anna-Maria V Petriv,Nicole T Neifert,Aleisha M Moore
{"title":"The deletion of nuclear progesterone receptors from kisspeptin cells does not impair negative feedback in female mice.","authors":"Kendra M Dillon,Dayanara B Lohr,Alyssa G Novak,Anna-Maria V Petriv,Nicole T Neifert,Aleisha M Moore","doi":"10.1210/endocr/bqae121","DOIUrl":null,"url":null,"abstract":"Reproductive function in mammals depends on the ability of progesterone to suppress pulsatile gonadotrophin-releasing hormone (GnRH) and luteinizing hormone (LH) secretion in a homeostatic negative feedback loop. Previous research identified that cells upstream from GnRH neurons expressing the nuclear progesterone receptor (PGR) are required for progesterone-negative feedback. However, the identity of these cells and the mechanism by which they reduce GnRH/LH pulsatile secretion is unknown. We aimed to address the hypothesis that PGR expressed by a neural population in the arcuate nucleus recently identified as the GnRH pulse generator, cells expressing Kisspeptin, Neurokinin B, and Dynorphin (KNDy cells), mediate progesterone negative feedback. To achieve this, we utilized female mice with the PGR gene conditionally deleted from kisspeptin cells (KPRKO mice) and observed a substantial decrease in the percentage of KNDy neurons co-expressing PGR mRNA (11% in KPRKO mice versus 86% in wildtype mice). However, KPRKO mice did not display changes in the frequency or amplitude of LH pulses in diestrus or estrus, nor in the ability of exogenous progesterone to blunt a post-castration rise in LH. Further, mRNA expression of arcuate kisspeptin and dynorphin, which are excitatory and inhibitory to GnRH secretion, respectively, remained unaltered in KPRKO mice compared to wildtype controls. Together, these findings show that the near-complete loss of PGR signaling from KNDy cells does not impact negative feedback regulation of GnRH pulse generation in mice, suggesting that feedback through this receptor can occur via a small number of KNDy cells or a yet unidentified cell population.","PeriodicalId":11819,"journal":{"name":"Endocrinology","volume":"2 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Endocrinology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1210/endocr/bqae121","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Reproductive function in mammals depends on the ability of progesterone to suppress pulsatile gonadotrophin-releasing hormone (GnRH) and luteinizing hormone (LH) secretion in a homeostatic negative feedback loop. Previous research identified that cells upstream from GnRH neurons expressing the nuclear progesterone receptor (PGR) are required for progesterone-negative feedback. However, the identity of these cells and the mechanism by which they reduce GnRH/LH pulsatile secretion is unknown. We aimed to address the hypothesis that PGR expressed by a neural population in the arcuate nucleus recently identified as the GnRH pulse generator, cells expressing Kisspeptin, Neurokinin B, and Dynorphin (KNDy cells), mediate progesterone negative feedback. To achieve this, we utilized female mice with the PGR gene conditionally deleted from kisspeptin cells (KPRKO mice) and observed a substantial decrease in the percentage of KNDy neurons co-expressing PGR mRNA (11% in KPRKO mice versus 86% in wildtype mice). However, KPRKO mice did not display changes in the frequency or amplitude of LH pulses in diestrus or estrus, nor in the ability of exogenous progesterone to blunt a post-castration rise in LH. Further, mRNA expression of arcuate kisspeptin and dynorphin, which are excitatory and inhibitory to GnRH secretion, respectively, remained unaltered in KPRKO mice compared to wildtype controls. Together, these findings show that the near-complete loss of PGR signaling from KNDy cells does not impact negative feedback regulation of GnRH pulse generation in mice, suggesting that feedback through this receptor can occur via a small number of KNDy cells or a yet unidentified cell population.
期刊介绍:
The mission of Endocrinology is to be the authoritative source of emerging hormone science and to disseminate that new knowledge to scientists, clinicians, and the public in a way that will enable "hormone science to health." Endocrinology welcomes the submission of original research investigating endocrine systems and diseases at all levels of biological organization, incorporating molecular mechanistic studies, such as hormone-receptor interactions, in all areas of endocrinology, as well as cross-disciplinary and integrative studies. The editors of Endocrinology encourage the submission of research in emerging areas not traditionally recognized as endocrinology or metabolism in addition to the following traditionally recognized fields: Adrenal; Bone Health and Osteoporosis; Cardiovascular Endocrinology; Diabetes; Endocrine-Disrupting Chemicals; Endocrine Neoplasia and Cancer; Growth; Neuroendocrinology; Nuclear Receptors and Their Ligands; Obesity; Reproductive Endocrinology; Signaling Pathways; and Thyroid.