Multi-visual-inertial system: Analysis, calibration, and estimation

Yulin Yang, Patrick Geneva, Guoquan Huang
{"title":"Multi-visual-inertial system: Analysis, calibration, and estimation","authors":"Yulin Yang, Patrick Geneva, Guoquan Huang","doi":"10.1177/02783649241245726","DOIUrl":null,"url":null,"abstract":"In this paper, we study state estimation of multi-visual-inertial systems (MVIS) and develop sensor fusion algorithms to optimally fuse an arbitrary number of asynchronous inertial measurement units (IMUs) or gyroscopes and global and/or rolling shutter cameras. We are especially interested in the full calibration of the associated visual-inertial sensors, including the IMU/camera intrinsics and the IMU-IMU/camera spatiotemporal extrinsics as well as the image readout time of rolling-shutter cameras (if used). To this end, we develop a new analytic combined IMU integration with inertial intrinsics—termed ACI<jats:sup>3</jats:sup>—to pre-integrate IMU measurements, which is leveraged to fuse auxiliary IMUs and/or gyroscopes alongside a base IMU. We model the multi-inertial measurements to include all the necessary inertial intrinsic and IMU-IMU spatiotemporal extrinsic parameters, while leveraging IMU-IMU rigid-body constraints to eliminate the necessity of auxiliary inertial poses and thus reducing computational complexity. By performing observability analysis of MVIS, we prove that the standard four unobservable directions remain—no matter how many inertial sensors are used, and also identify, for the first time, degenerate motions for IMU-IMU spatiotemporal extrinsics and auxiliary inertial intrinsics. In addition to extensive simulations that validate our analysis and algorithms, we have built our own MVIS sensor rig and collected over 25 real-world datasets to experimentally verify the proposed calibration against the state-of-the-art calibration method Kalibr. We show that the proposed MVIS calibration is able to achieve competing accuracy with improved convergence and repeatability, which is open sourced to better benefit the community.","PeriodicalId":501362,"journal":{"name":"The International Journal of Robotics Research","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International Journal of Robotics Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/02783649241245726","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study state estimation of multi-visual-inertial systems (MVIS) and develop sensor fusion algorithms to optimally fuse an arbitrary number of asynchronous inertial measurement units (IMUs) or gyroscopes and global and/or rolling shutter cameras. We are especially interested in the full calibration of the associated visual-inertial sensors, including the IMU/camera intrinsics and the IMU-IMU/camera spatiotemporal extrinsics as well as the image readout time of rolling-shutter cameras (if used). To this end, we develop a new analytic combined IMU integration with inertial intrinsics—termed ACI3—to pre-integrate IMU measurements, which is leveraged to fuse auxiliary IMUs and/or gyroscopes alongside a base IMU. We model the multi-inertial measurements to include all the necessary inertial intrinsic and IMU-IMU spatiotemporal extrinsic parameters, while leveraging IMU-IMU rigid-body constraints to eliminate the necessity of auxiliary inertial poses and thus reducing computational complexity. By performing observability analysis of MVIS, we prove that the standard four unobservable directions remain—no matter how many inertial sensors are used, and also identify, for the first time, degenerate motions for IMU-IMU spatiotemporal extrinsics and auxiliary inertial intrinsics. In addition to extensive simulations that validate our analysis and algorithms, we have built our own MVIS sensor rig and collected over 25 real-world datasets to experimentally verify the proposed calibration against the state-of-the-art calibration method Kalibr. We show that the proposed MVIS calibration is able to achieve competing accuracy with improved convergence and repeatability, which is open sourced to better benefit the community.
多视觉惯性系统:分析、校准和估算
在本文中,我们研究了多视觉惯性系统(MVIS)的状态估计,并开发了传感器融合算法,以优化融合任意数量的异步惯性测量单元(IMU)或陀螺仪以及全局和/或滚动快门相机。我们对相关视觉惯性传感器的全面校准特别感兴趣,包括 IMU/相机的本征、IMU-IMU/相机的时空外征以及滚动快门相机(如果使用)的图像读出时间。为此,我们开发了一种新的分析方法,将 IMU 与惯性本征相结合--称为 ACI3--对 IMU 测量进行预集成,并利用它将辅助 IMU 和/或陀螺仪与基本 IMU 融合在一起。我们对多惯性测量进行建模,以包含所有必要的惯性本征参数和 IMU-IMU 时空外征参数,同时利用 IMU-IMU 刚体约束消除辅助惯性姿势的必要性,从而降低计算复杂性。通过对 MVIS 进行可观测性分析,我们证明了无论使用多少个惯性传感器,标准的四个不可观测方向依然存在,并首次确定了 IMU-IMU 时空外参量和辅助惯性内参量的退化运动。除了验证我们的分析和算法的大量模拟之外,我们还建立了自己的 MVIS 传感器平台,并收集了超过 25 个真实世界的数据集,以实验验证所提出的校准方法与最先进的校准方法 Kalibr 的对比。我们的研究表明,所提出的 MVIS 校准方法能够达到与之相媲美的精度,同时还提高了收敛性和可重复性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信