J. Laukkanen, H. Runtti, I. Lancellotti, T. Luukkonen, C. Leonelli, U. Lassi
{"title":"Alkali-activated materials containing mine tailings and zeolite for seepage water treatment in a closed nickel mine","authors":"J. Laukkanen, H. Runtti, I. Lancellotti, T. Luukkonen, C. Leonelli, U. Lassi","doi":"10.1007/s13762-024-06002-y","DOIUrl":null,"url":null,"abstract":"<p>In the present study, alkali-activated materials were assessed as adsorbents for mine water treatment. The composition of alkali-activated materials, involving mixtures of metakaolin, blast-furnace slag, mine tailings, and zeolite, was optimized based on their leaching behavior and adsorption performance. The most effective adsorbent contained solely blast furnace slag as an aluminosilicate precursor and was selected for a pilot-scale study at a closed nickel mine in Finland. In the pilot, seepage water from a gangue area with an influent flow rate of 0.5 m<sup>3</sup>/d was treated using a permeable reactive barrier set-up containing 10 kg of slag-based adsorbent prepared by a granulation-alkali activation process. During a one-week experiment, the adsorbent granules were capable of effectively uptaking Ni, Fe, and Mn from the seepage water; the removal percentages of Ni, Fe, and Mn were 82.4%, 81.6%, and 82.5%, respectively. The results indicated the feasibility of blast furnace slag-based adsorbents for toxic element removal in a potentially sustainable approach.</p>","PeriodicalId":589,"journal":{"name":"International Journal of Environmental Science and Technology","volume":"10 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Environmental Science and Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s13762-024-06002-y","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
In the present study, alkali-activated materials were assessed as adsorbents for mine water treatment. The composition of alkali-activated materials, involving mixtures of metakaolin, blast-furnace slag, mine tailings, and zeolite, was optimized based on their leaching behavior and adsorption performance. The most effective adsorbent contained solely blast furnace slag as an aluminosilicate precursor and was selected for a pilot-scale study at a closed nickel mine in Finland. In the pilot, seepage water from a gangue area with an influent flow rate of 0.5 m3/d was treated using a permeable reactive barrier set-up containing 10 kg of slag-based adsorbent prepared by a granulation-alkali activation process. During a one-week experiment, the adsorbent granules were capable of effectively uptaking Ni, Fe, and Mn from the seepage water; the removal percentages of Ni, Fe, and Mn were 82.4%, 81.6%, and 82.5%, respectively. The results indicated the feasibility of blast furnace slag-based adsorbents for toxic element removal in a potentially sustainable approach.
期刊介绍:
International Journal of Environmental Science and Technology (IJEST) is an international scholarly refereed research journal which aims to promote the theory and practice of environmental science and technology, innovation, engineering and management.
A broad outline of the journal''s scope includes: peer reviewed original research articles, case and technical reports, reviews and analyses papers, short communications and notes to the editor, in interdisciplinary information on the practice and status of research in environmental science and technology, both natural and man made.
The main aspects of research areas include, but are not exclusive to; environmental chemistry and biology, environments pollution control and abatement technology, transport and fate of pollutants in the environment, concentrations and dispersion of wastes in air, water, and soil, point and non-point sources pollution, heavy metals and organic compounds in the environment, atmospheric pollutants and trace gases, solid and hazardous waste management; soil biodegradation and bioremediation of contaminated sites; environmental impact assessment, industrial ecology, ecological and human risk assessment; improved energy management and auditing efficiency and environmental standards and criteria.