J. Yang, J. Zhang, X. Du, T. Gao, Z. Cheng, W. Fu, S. Wang
{"title":"Ammonia inhibition in anaerobic digestion of organic waste: a review","authors":"J. Yang, J. Zhang, X. Du, T. Gao, Z. Cheng, W. Fu, S. Wang","doi":"10.1007/s13762-024-06029-1","DOIUrl":null,"url":null,"abstract":"<p>Anaerobic digestion (AD) has become the technology of choice for organic waste treatment as an environmentally beneficial and sustainable waste treatment technology. However, the nitrogen content of these organic waste streams is generally high. Ammonia is produced in the biodegradation of nitrogenous organic matter. Low concentrations of ammonia favour AD, but high concentrations can lead to digestive system failure. To address the issue of ammonia inhibition and ensure the stability of the digestive system, numerous physical, chemical, and biologicalmethods aimed at controlling ammonia levels and/or strengthening the biological processes have been proposedand developed. Literature evidence suggests that differences in AD reaction conditions and microbial sources result in different tolerances of the digestive system to ammonia and nitrogen. This paper summarises and compares the inhibitory effects of ammonia nitrogen under different conditions and the existing regulatory measures to alleviate ammonia nitrogen inhibition. In addition, since the core of the digestive system is microorganisms, this paper explains the mechanism of ammonia stress especially at the microbial level, and in this way, it explores the future direction of research using biofortification. This review provides a theoretical reference for solving the problem of ammonia nitrogen inhibition.</p>","PeriodicalId":589,"journal":{"name":"International Journal of Environmental Science and Technology","volume":"5 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Environmental Science and Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s13762-024-06029-1","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Anaerobic digestion (AD) has become the technology of choice for organic waste treatment as an environmentally beneficial and sustainable waste treatment technology. However, the nitrogen content of these organic waste streams is generally high. Ammonia is produced in the biodegradation of nitrogenous organic matter. Low concentrations of ammonia favour AD, but high concentrations can lead to digestive system failure. To address the issue of ammonia inhibition and ensure the stability of the digestive system, numerous physical, chemical, and biologicalmethods aimed at controlling ammonia levels and/or strengthening the biological processes have been proposedand developed. Literature evidence suggests that differences in AD reaction conditions and microbial sources result in different tolerances of the digestive system to ammonia and nitrogen. This paper summarises and compares the inhibitory effects of ammonia nitrogen under different conditions and the existing regulatory measures to alleviate ammonia nitrogen inhibition. In addition, since the core of the digestive system is microorganisms, this paper explains the mechanism of ammonia stress especially at the microbial level, and in this way, it explores the future direction of research using biofortification. This review provides a theoretical reference for solving the problem of ammonia nitrogen inhibition.
期刊介绍:
International Journal of Environmental Science and Technology (IJEST) is an international scholarly refereed research journal which aims to promote the theory and practice of environmental science and technology, innovation, engineering and management.
A broad outline of the journal''s scope includes: peer reviewed original research articles, case and technical reports, reviews and analyses papers, short communications and notes to the editor, in interdisciplinary information on the practice and status of research in environmental science and technology, both natural and man made.
The main aspects of research areas include, but are not exclusive to; environmental chemistry and biology, environments pollution control and abatement technology, transport and fate of pollutants in the environment, concentrations and dispersion of wastes in air, water, and soil, point and non-point sources pollution, heavy metals and organic compounds in the environment, atmospheric pollutants and trace gases, solid and hazardous waste management; soil biodegradation and bioremediation of contaminated sites; environmental impact assessment, industrial ecology, ecological and human risk assessment; improved energy management and auditing efficiency and environmental standards and criteria.