Furui Zhai, Shanshan Mu, Yinghui Song, Min Zhang, Cui Zhang, Ze Lv
{"title":"Machine Learning Prediction of Residual and Recurrent High-Grade CIN Post-LEEP","authors":"Furui Zhai, Shanshan Mu, Yinghui Song, Min Zhang, Cui Zhang, Ze Lv","doi":"10.2147/cmar.s484057","DOIUrl":null,"url":null,"abstract":"<strong>Purpose:</strong> This study aims to develop a machine learning (ML) model to predict the risk of residual or recurrent high-grade cervical intraepithelial neoplasia (CIN) after loop electrosurgical excision procedure (LEEP), addressing a critical gap in personalized follow-up care.<br/><strong>Methods:</strong> A retrospective analysis of 532 patients who underwent LEEP for high-grade CIN at Cangzhou Central Hospital (2016– 2020) was conducted. In the final analysis, 99 women (18.6%) were found to have residual or recurrent high-grade CIN (CIN2 or worse) within five years of follow-up. Four feature selection methods identified significant predictors of residual or recurrent CIN. Eight ML algorithms were evaluated using performance metrics such as AUROC, accuracy, sensitivity, specificity, PPV, NPV, F1 score, calibration curve, and decision curve analysis. Fivefold cross-validation optimized and validated the model, and SHAP analysis assessed feature importance.<br/><strong>Results:</strong> The XGBoost algorithm demonstrated the highest predictive performance with the best AUROC. The optimized model included six key predictors: age, ThinPrep cytologic test (TCT) results, HPV classification, CIN severity, glandular involvement, and margin status. SHAP analysis identified CIN severity and margin status as the most influential predictors. An online prediction tool was developed for real-time risk assessment.<br/><strong>Conclusion:</strong> This ML-based predictive model for post-LEEP high-grade CIN provides a significant advancement in gynecologic oncology, enhancing personalized patient care and facilitating early intervention and informed clinical decision-making.<br/><br/><strong>Keywords:</strong> cervical intraepithelial neoplasia, loop electrosurgical excision procedure, residual or recurrent, machine learning, predictive modeling<br/>","PeriodicalId":9479,"journal":{"name":"Cancer Management and Research","volume":"44 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Management and Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/cmar.s484057","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: This study aims to develop a machine learning (ML) model to predict the risk of residual or recurrent high-grade cervical intraepithelial neoplasia (CIN) after loop electrosurgical excision procedure (LEEP), addressing a critical gap in personalized follow-up care. Methods: A retrospective analysis of 532 patients who underwent LEEP for high-grade CIN at Cangzhou Central Hospital (2016– 2020) was conducted. In the final analysis, 99 women (18.6%) were found to have residual or recurrent high-grade CIN (CIN2 or worse) within five years of follow-up. Four feature selection methods identified significant predictors of residual or recurrent CIN. Eight ML algorithms were evaluated using performance metrics such as AUROC, accuracy, sensitivity, specificity, PPV, NPV, F1 score, calibration curve, and decision curve analysis. Fivefold cross-validation optimized and validated the model, and SHAP analysis assessed feature importance. Results: The XGBoost algorithm demonstrated the highest predictive performance with the best AUROC. The optimized model included six key predictors: age, ThinPrep cytologic test (TCT) results, HPV classification, CIN severity, glandular involvement, and margin status. SHAP analysis identified CIN severity and margin status as the most influential predictors. An online prediction tool was developed for real-time risk assessment. Conclusion: This ML-based predictive model for post-LEEP high-grade CIN provides a significant advancement in gynecologic oncology, enhancing personalized patient care and facilitating early intervention and informed clinical decision-making.
期刊介绍:
Cancer Management and Research is an international, peer reviewed, open access journal focusing on cancer research and the optimal use of preventative and integrated treatment interventions to achieve improved outcomes, enhanced survival, and quality of life for cancer patients. Specific topics covered in the journal include:
◦Epidemiology, detection and screening
◦Cellular research and biomarkers
◦Identification of biotargets and agents with novel mechanisms of action
◦Optimal clinical use of existing anticancer agents, including combination therapies
◦Radiation and surgery
◦Palliative care
◦Patient adherence, quality of life, satisfaction
The journal welcomes submitted papers covering original research, basic science, clinical & epidemiological studies, reviews & evaluations, guidelines, expert opinion and commentary, and case series that shed novel insights on a disease or disease subtype.